cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326496 Number of maximal product-free subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 6, 6, 9, 9, 15, 17, 30, 30, 46, 46, 51, 61, 103, 103, 129, 158, 282, 282, 322, 322, 553, 553, 615, 689, 1247, 1365, 1870, 1870, 3566, 3758, 5244, 5244, 8677, 8677, 9807, 12147, 23351, 23351, 27469, 31694, 45718, 47186, 54594, 54594, 95382, 108198
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

A set is product-free if it contains no product of two (not necessarily distinct) elements.
Also the number of maximal quotient-free subsets of {1..n}.

Examples

			The a(2) = 1 through a(10) = 6 subsets (A = 10):
  {2}  {23}  {23}  {235}  {235}   {2357}   {23578}   {23578}   {23578}
             {34}  {345}  {256}   {2567}   {25678}   {256789}  {2378A}
                          {3456}  {34567}  {345678}  {345678}  {256789}
                                                     {456789}  {26789A}
                                                               {345678A}
                                                               {456789A}
		

Crossrefs

Product-free subsets are A326489.
Subsets without products of distinct elements are A326117.
Maximal sum-free subsets are A121269.
Maximal sum-free and product-free subsets are A326497.
Maximal subsets without products of distinct elements are A325710.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Times@@@Tuples[#,2]]=={}&]]],{n,0,10}]
  • PARI
    \\ See link for program file.
    for(n=0, 30, print1(A326496(n), ", ")) \\ Andrew Howroyd, Aug 30 2019

Extensions

a(18)-a(55) from Andrew Howroyd, Aug 30 2019

A326497 Number of maximal sum-free and product-free subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 6, 8, 9, 15, 21, 26, 38, 51, 69, 89, 119, 149, 197, 261, 356, 447, 601, 781, 1003, 1293, 1714, 2228, 2931, 3697, 4843, 6258, 8187, 10273, 13445, 16894, 21953, 27469, 35842, 45410, 58948, 73939, 95199, 120593, 154510, 192995, 247966, 312642
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

A set is sum-free and product-free if it contains no sum or product of two (not necessarily distinct) elements.

Examples

			The a(2) = 1 through a(10) = 15 subsets (A = 10):
  {2}  {23}  {23}  {23}   {23}   {237}   {256}   {267}    {23A}
             {34}  {25}   {256}  {256}   {258}   {345}    {345}
                   {345}  {345}  {267}   {267}   {357}    {34A}
                          {456}  {345}   {345}   {2378}   {357}
                                 {357}   {357}   {2569}   {38A}
                                 {4567}  {2378}  {2589}   {2378}
                                         {4567}  {4567}   {2569}
                                         {5678}  {4679}   {2589}
                                                 {56789}  {267A}
                                                          {269A}
                                                          {4567}
                                                          {4679}
                                                          {479A}
                                                          {56789}
                                                          {6789A}
		

Crossrefs

Sum-free and product-free subsets are A326495.
Sum-free subsets are A007865.
Maximal sum-free subsets are A121269.
Product-free subsets are A326489.
Maximal product-free subsets are A326496.
Subsets with sums (and products) are A326083.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Tuples[#,2],Times@@@Tuples[#,2]]]=={}&]]],{n,0,10}]
  • PARI
    \\ See link for program file.
    for(n=0, 37, print1(A326497(n), ", ")) \\ Andrew Howroyd, Aug 30 2019

Extensions

a(21)-a(40) from Andrew Howroyd, Aug 30 2019
a(41)-a(48) from Jinyuan Wang, Oct 11 2020

A326491 Number of maximal subsets of {1..n} containing no differences or quotients of pairs of distinct elements.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 9, 10, 16, 22, 27, 39, 52, 70, 90, 120, 150, 198, 262, 357, 448, 602, 782, 1004, 1294, 1715, 2229, 2932, 3698, 4844, 6259, 8188, 10274, 13446, 16895, 21954, 27470, 35843, 45411, 58949, 73940, 95200, 120594, 154511, 192996, 247967, 312643
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Examples

			The a(1) = 1 through a(9) = 10 subsets:
  {1}  {1}  {1}    {1}    {1}      {1}      {1}        {1}        {1}
       {2}  {2,3}  {2,3}  {2,3}    {2,3}    {2,3,7}    {2,5,6}    {2,6,7}
                   {3,4}  {2,5}    {2,5,6}  {2,5,6}    {2,5,8}    {3,4,5}
                          {3,4,5}  {3,4,5}  {2,6,7}    {2,6,7}    {3,5,7}
                                   {4,5,6}  {3,4,5}    {3,4,5}    {2,3,7,8}
                                            {3,5,7}    {3,5,7}    {2,5,6,9}
                                            {4,5,6,7}  {2,3,7,8}  {2,5,8,9}
                                                       {4,5,6,7}  {4,5,6,7}
                                                       {5,6,7,8}  {4,6,7,9}
                                                                  {5,6,7,8,9}
		

Crossrefs

Subsets without differences or quotients are A326490.
Subsets with differences and quotients are A326494.
Maximal subsets without differences are A121269
Maximal subsets without quotients are A326492.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]]],{n,0,10}]

Formula

a(n) = A326497(n) + 1 for n > 1. - Andrew Howroyd, Aug 30 2019

Extensions

a(16)-a(40) from Andrew Howroyd, Aug 30 2019
a(41)-a(48) from Jinyuan Wang, Mar 04 2025

A325710 Number of maximal subsets of {1..n} containing no products of distinct elements.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 24, 28, 32, 32, 62, 62, 92, 102, 184, 184, 254, 254, 474, 506, 686, 686, 1172, 1172, 1792, 1906, 3568, 3794, 5326, 5326, 10282, 10618, 14822, 14822, 25564, 25564, 35304, 39432, 76888, 76888, 100574, 100574, 197870, 201622, 282014
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Examples

			The a(1) = 1 through a(9) = 6 maximal subsets:
  {1}  {1}  {1}   {1}    {1}     {1}     {1}      {1}       {1}
       {2}  {23}  {234}  {2345}  {2345}  {23457}  {23457}   {234579}
                                 {2456}  {24567}  {23578}   {235789}
                                 {3456}  {34567}  {24567}   {245679}
                                                  {25678}   {256789}
                                                  {345678}  {3456789}
		

Crossrefs

Subsets without products of distinct elements are A326117.
Maximal product-free subsets are A326496.
Subsets with products are A326076.
Maximal subsets without sums of distinct elements are A326498.
Maximal subsets without quotients are A326492.
Maximal subsets without sums or products of distinct elements are A326025.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Times@@@Subsets[#,{2,n}]]=={}&]]],{n,0,10}]
  • PARI
    \\ See link for program file.
    for(n=0, 30, print1(A325710(n), ", ")) \\ Andrew Howroyd, Aug 29 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 29 2019

A327591 Number of subsets of {1..n} containing no quotients of pairs of distinct elements.

Original entry on oeis.org

1, 2, 3, 5, 7, 13, 23, 45, 89, 137, 253, 505, 897, 1793, 3393, 6353, 9721, 19441, 35665, 71329, 129953, 247233, 477665, 955329, 1700417, 2657281, 5184001, 10368001, 19407361, 38814721, 68868353, 137736705, 260693505, 505830401, 999641601, 1882820609, 2807196673
Offset: 0

Views

Author

Peter Kagey, Sep 17 2019

Keywords

Examples

			The a(0) = 1 through a(5) = 13 subsets:
  {}  {}   {}   {}     {}     {}
      {1}  {1}  {1}    {1}    {1}
           {2}  {2}    {2}    {2}
                {3}    {3}    {3}
                {2,3}  {4}    {4}
                       {2,3}  {5}
                       {3,4}  {2,3}
                              {2,5}
                              {3,4}
                              {3,5}
                              {4,5}
                              {2,3,5}
                              {3,4,5}
		

Crossrefs

Maximal subsets without quotients are A326492.
Subsets with quotients are A326023.
Subsets without differences or quotients are A326490.
Subsets without products are A326489.

Formula

A326489(n) + 1 for n > 0.
Showing 1-5 of 5 results.