A326491
Number of maximal subsets of {1..n} containing no differences or quotients of pairs of distinct elements.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 7, 9, 10, 16, 22, 27, 39, 52, 70, 90, 120, 150, 198, 262, 357, 448, 602, 782, 1004, 1294, 1715, 2229, 2932, 3698, 4844, 6259, 8188, 10274, 13446, 16895, 21954, 27470, 35843, 45411, 58949, 73940, 95200, 120594, 154511, 192996, 247967, 312643
Offset: 0
The a(1) = 1 through a(9) = 10 subsets:
{1} {1} {1} {1} {1} {1} {1} {1} {1}
{2} {2,3} {2,3} {2,3} {2,3} {2,3,7} {2,5,6} {2,6,7}
{3,4} {2,5} {2,5,6} {2,5,6} {2,5,8} {3,4,5}
{3,4,5} {3,4,5} {2,6,7} {2,6,7} {3,5,7}
{4,5,6} {3,4,5} {3,4,5} {2,3,7,8}
{3,5,7} {3,5,7} {2,5,6,9}
{4,5,6,7} {2,3,7,8} {2,5,8,9}
{4,5,6,7} {4,5,6,7}
{5,6,7,8} {4,6,7,9}
{5,6,7,8,9}
Subsets without differences or quotients are
A326490.
Subsets with differences and quotients are
A326494.
Maximal subsets without differences are
A121269
Maximal subsets without quotients are
A326492.
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]]],{n,0,10}]
A326490
Number of subsets of {1..n} containing no differences or quotients of pairs of distinct elements.
Original entry on oeis.org
1, 2, 3, 5, 7, 12, 18, 31, 46, 72, 102, 172, 259, 428, 607, 989, 1329, 2142, 3117, 4953, 6956, 11032, 15321, 23979, 33380, 48699, 66849, 104853, 144712, 220758, 304133, 461580, 636556, 973843, 1316513, 1958828, 2585433, 3882843, 5237093, 7884277, 10555739, 15729293
Offset: 0
The a(0) = 1 through a(6) = 18 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{2,3} {4} {4} {4}
{2,3} {5} {5}
{3,4} {2,3} {6}
{2,5} {2,3}
{3,4} {2,5}
{3,5} {2,6}
{4,5} {3,4}
{3,4,5} {3,5}
{4,5}
{4,6}
{5,6}
{2,5,6}
{3,4,5}
{4,5,6}
Subsets without difference are
A007865.
Maximal subsets without differences or quotients are
A326491.
Subsets without quotients are
A327591.
Subsets with differences and quotients are
A326494.
-
Table[Length[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]],{n,0,10}]
-
a(n)={
my(recurse(k, b)=
if(k > n, 1,
my(t = self()(k + 1, b));
for(i=1, k\2, if(bittest(b,i) && (bittest(b,k-i) || (!(k%i) && bittest(b,k/i))), return(t)));
t += self()(k + 1, b + (1<Andrew Howroyd, Aug 25 2019
Showing 1-2 of 2 results.