A326492 Number of maximal subsets of {1..n} containing no quotients of pairs of distinct elements.
1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 7, 7, 10, 10, 16, 18, 31, 31, 47, 47, 52, 62, 104, 104, 130, 159, 283, 283, 323, 323, 554, 554, 616, 690, 1248, 1366, 1871, 1871, 3567, 3759, 5245, 5245, 8678, 8678, 9808, 12148, 23352, 23352, 27470, 31695, 45719, 47187, 54595, 54595, 95383, 108199
Offset: 0
Keywords
Examples
The a(0) = 1 through a(9) = 5 subsets: {} {1} {1} {1} {1} {1} {1} {1} {1} {1} {2} {23} {23} {235} {235} {2357} {23578} {23578} {34} {345} {256} {2567} {25678} {256789} {3456} {34567} {345678} {345678} {456789}
Crossrefs
Programs
-
Mathematica
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]]=={}&]]],{n,0,10}]
Formula
a(n) = A326496(n) + 1 for n > 1. - Andrew Howroyd, Aug 30 2019
Extensions
Terms a(16) and beyond from Andrew Howroyd, Aug 30 2019