cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326496 Number of maximal product-free subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 6, 6, 9, 9, 15, 17, 30, 30, 46, 46, 51, 61, 103, 103, 129, 158, 282, 282, 322, 322, 553, 553, 615, 689, 1247, 1365, 1870, 1870, 3566, 3758, 5244, 5244, 8677, 8677, 9807, 12147, 23351, 23351, 27469, 31694, 45718, 47186, 54594, 54594, 95382, 108198
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

A set is product-free if it contains no product of two (not necessarily distinct) elements.
Also the number of maximal quotient-free subsets of {1..n}.

Examples

			The a(2) = 1 through a(10) = 6 subsets (A = 10):
  {2}  {23}  {23}  {235}  {235}   {2357}   {23578}   {23578}   {23578}
             {34}  {345}  {256}   {2567}   {25678}   {256789}  {2378A}
                          {3456}  {34567}  {345678}  {345678}  {256789}
                                                     {456789}  {26789A}
                                                               {345678A}
                                                               {456789A}
		

Crossrefs

Product-free subsets are A326489.
Subsets without products of distinct elements are A326117.
Maximal sum-free subsets are A121269.
Maximal sum-free and product-free subsets are A326497.
Maximal subsets without products of distinct elements are A325710.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Times@@@Tuples[#,2]]=={}&]]],{n,0,10}]
  • PARI
    \\ See link for program file.
    for(n=0, 30, print1(A326496(n), ", ")) \\ Andrew Howroyd, Aug 30 2019

Extensions

a(18)-a(55) from Andrew Howroyd, Aug 30 2019