A326501 a(n) = Sum_{k=0..n} (-k)^k.
1, 0, 4, -23, 233, -2892, 43764, -779779, 15997437, -371423052, 9628576948, -275683093663, 8640417354593, -294234689237660, 10817772136320356, -427076118244539019, 18019667955465012597, -809220593930871751580, 38537187481365665823844
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..386
Programs
-
Maple
a:= proc(n) option remember; `if`(n<0, 0, (-n)^n+a(n-1)) end: seq(a(n), n=0..23); # Alois P. Heinz, Sep 12 2019
-
Mathematica
RecurrenceTable[{a[0] == 1, a[n] == a[n-1] + (-n)^n}, a, {n, 0, 23}] (* Jean-François Alcover, Nov 27 2020 *)
-
PARI
{a(n) = sum(k=0, n, (-k)^k)}
-
Python
from itertools import accumulate, count, islice def A326501_gen(): # generator of terms yield from accumulate((-k)**k for k in count(0)) A326501_list = list(islice(A326501_gen(),10)) # Chai Wah Wu, Jun 18 2022
Formula
a(n) = 1 + (-1)^n * A001099(n).