A326566 Number of covering antichains of subsets of {1..n} with equal edge-sums.
2, 1, 1, 2, 4, 14, 92, 1320, 73584, 51913039
Offset: 0
Examples
The a(1) = 1 through a(5) = 14 antichains: {{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}} {{3},{1,2}} {{1,4},{2,3}} {{1,2,5},{1,3,4}} {{2,4},{1,2,3}} {{1,3,5},{2,3,4}} {{3,4},{1,2,4}} {{1,4,5},{2,3,5}} {{5},{1,4},{2,3}} {{1,4,5},{1,2,3,4}} {{2,3,5},{1,2,3,4}} {{2,4,5},{1,2,3,5}} {{3,4,5},{1,2,4,5}} {{1,5},{2,4},{1,2,3}} {{2,5},{3,4},{1,2,4}} {{3,5},{1,2,5},{1,3,4}} {{4,5},{1,3,5},{2,3,4}} {{1,4,5},{2,3,5},{1,2,3,4}}
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&],Union@@#==Range[n]&]; Table[Length[cleq[n]],{n,0,5}]
Extensions
a(9) from Andrew Howroyd, Aug 14 2019
Comments