cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A326565 Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having the same sum.

Original entry on oeis.org

1, 0, 1, 1, 4, 13, 91, 1318, 73581, 51913025
Offset: 0

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(2) = 1 through a(5) = 13 antichains:
  {{1,2}}  {{1,2,3}}  {{1,2,3,4}}      {{1,2,3,4,5}}
                      {{1,4},{2,3}}    {{1,2,5},{1,3,4}}
                      {{2,4},{1,2,3}}  {{1,3,5},{2,3,4}}
                      {{3,4},{1,2,4}}  {{1,4,5},{2,3,5}}
                                       {{1,4,5},{1,2,3,4}}
                                       {{2,3,5},{1,2,3,4}}
                                       {{2,4,5},{1,2,3,5}}
                                       {{3,4,5},{1,2,4,5}}
                                       {{1,5},{2,4},{1,2,3}}
                                       {{2,5},{3,4},{1,2,4}}
                                       {{3,5},{1,2,5},{1,3,4}}
                                       {{4,5},{1,3,5},{2,3,4}}
                                       {{1,4,5},{2,3,5},{1,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

Extensions

a(9) from Andrew Howroyd, Aug 14 2019

A326572 Number of covering antichains of subsets of {1..n}, all having different sums.

Original entry on oeis.org

2, 1, 2, 8, 80, 3015, 803898
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(0) = 2 through a(3) = 8 antichains:
  {}    {{1}}  {{1,2}}    {{1,2,3}}
  {{}}         {{1},{2}}  {{1},{2,3}}
                          {{2},{1,3}}
                          {{1,2},{1,3}}
                          {{1,2},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
The a(4) = 80 antichains:
  {1234}  {1}{234}    {1}{2}{34}     {1}{2}{3}{4}       {12}{13}{14}{24}{34}
          {12}{34}    {1}{3}{24}     {1}{23}{24}{34}    {12}{13}{23}{24}{34}
          {13}{24}    {1}{4}{23}     {2}{13}{14}{34}
          {2}{134}    {2}{3}{14}     {12}{13}{14}{24}
          {3}{124}    {1}{23}{24}    {12}{13}{14}{34}
          {4}{123}    {1}{23}{34}    {12}{13}{23}{24}
          {12}{134}   {1}{24}{34}    {12}{13}{23}{34}
          {12}{234}   {2}{13}{14}    {12}{13}{24}{34}
          {13}{124}   {2}{13}{34}    {12}{14}{24}{34}
          {13}{234}   {2}{14}{34}    {12}{23}{24}{34}
          {14}{123}   {3}{14}{24}    {13}{14}{24}{34}
          {14}{234}   {4}{12}{23}    {13}{23}{24}{34}
          {23}{124}   {12}{13}{14}   {12}{13}{14}{234}
          {23}{134}   {12}{13}{24}   {12}{23}{24}{134}
          {24}{134}   {12}{13}{34}   {123}{124}{134}{234}
          {34}{123}   {12}{14}{34}
          {123}{124}  {12}{23}{24}
          {123}{134}  {12}{23}{34}
          {123}{234}  {12}{24}{34}
          {124}{134}  {13}{14}{24}
          {124}{234}  {13}{23}{24}
          {134}{234}  {13}{23}{34}
                      {13}{24}{34}
                      {14}{24}{34}
                      {12}{13}{234}
                      {12}{14}{234}
                      {12}{23}{134}
                      {12}{24}{134}
                      {13}{14}{234}
                      {13}{23}{124}
                      {14}{34}{123}
                      {23}{24}{134}
                      {12}{134}{234}
                      {13}{124}{234}
                      {14}{123}{234}
                      {23}{124}{134}
                      {123}{124}{134}
                      {123}{124}{234}
                      {123}{134}{234}
                      {124}{134}{234}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block-sums are A275780.
MM-numbers of multiset partitions with different part-sums are A326535.
Antichain covers with equal edge-sums are A326566.
Antichain covers with different edge-sizes are A326570.
The case without singletons is A326571.
Antichains with equal edge-sums are A326574.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

A326574 Number of antichains of subsets of {1..n} with equal edge-sums.

Original entry on oeis.org

2, 3, 5, 10, 22, 61, 247, 2096, 81896, 52260575
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(0) = 2 through a(4) = 22 antichains:
  {}    {}     {}       {}           {}
  {{}}  {{}}   {{}}     {{}}         {{}}
        {{1}}  {{1}}    {{1}}        {{1}}
               {{2}}    {{2}}        {{2}}
               {{1,2}}  {{3}}        {{3}}
                        {{1,2}}      {{4}}
                        {{1,3}}      {{1,2}}
                        {{2,3}}      {{1,3}}
                        {{1,2,3}}    {{1,4}}
                        {{3},{1,2}}  {{2,3}}
                                     {{2,4}}
                                     {{3,4}}
                                     {{1,2,3}}
                                     {{1,2,4}}
                                     {{1,3,4}}
                                     {{2,3,4}}
                                     {{1,2,3,4}}
                                     {{3},{1,2}}
                                     {{4},{1,3}}
                                     {{1,4},{2,3}}
                                     {{2,4},{1,2,3}}
                                     {{3,4},{1,2,4}}
		

Crossrefs

Set partitions with equal block-sums are A035470.
Antichains with different edge-sums are A326030.
MM-numbers of multiset partitions with equal part-sums are A326534.
The covering case is A326566.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleqset[set_]:=stableSets[Subsets[set],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&];
    Table[Length[cleqset[Range[n]]],{n,0,5}]

Extensions

a(9) from Andrew Howroyd, Aug 13 2019

A326571 Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having different sums.

Original entry on oeis.org

1, 0, 1, 5, 61, 2721, 788221
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(3) = 5 antichains:
  {{1,2,3}}
  {{1,3},{2,3}}
  {{1,2},{2,3}}
  {{1,2},{1,3}}
  {{1,2},{1,3},{2,3}}
The a(4) = 61 antichains:
  {1234}  {12}{34}    {12}{13}{14}   {12}{13}{14}{24}   {12}{13}{14}{24}{34}
          {13}{24}    {12}{13}{24}   {12}{13}{14}{34}   {12}{13}{23}{24}{34}
          {12}{134}   {12}{13}{34}   {12}{13}{23}{24}
          {12}{234}   {12}{14}{34}   {12}{13}{23}{34}
          {13}{124}   {12}{23}{24}   {12}{13}{24}{34}
          {13}{234}   {12}{23}{34}   {12}{14}{24}{34}
          {14}{123}   {12}{24}{34}   {12}{23}{24}{34}
          {14}{234}   {13}{14}{24}   {13}{14}{24}{34}
          {23}{124}   {13}{23}{24}   {13}{23}{24}{34}
          {23}{134}   {13}{23}{34}   {12}{13}{14}{234}
          {24}{134}   {13}{24}{34}   {12}{23}{24}{134}
          {34}{123}   {14}{24}{34}   {123}{124}{134}{234}
          {123}{124}  {12}{13}{234}
          {123}{134}  {12}{14}{234}
          {123}{234}  {12}{23}{134}
          {124}{134}  {12}{24}{134}
          {124}{234}  {13}{14}{234}
          {134}{234}  {13}{23}{124}
                      {14}{34}{123}
                      {23}{24}{134}
                      {12}{134}{234}
                      {13}{124}{234}
                      {14}{123}{234}
                      {23}{124}{134}
                      {123}{124}{134}
                      {123}{124}{234}
                      {123}{134}{234}
                      {124}{134}{234}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block-sums are A275780.
MM-numbers of multiset partitions with different part-sums are A326535.
Antichain covers with equal edge-sums and no singletons are A326565.
Antichain covers with different edge-sizes and no singletons are A326569.
The case with singletons allowed is A326572.
Antichains with equal edge-sums are A326574.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

A326573 Number of connected antichains of subsets of {1..n}, all having different sums.

Original entry on oeis.org

1, 1, 1, 5, 59, 2689, 787382
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(3) = 5 antichains:
  {{1,2,3}}
  {{1,3},{2,3}}
  {{1,2},{2,3}}
  {{1,2},{1,3}}
  {{1,2},{1,3},{2,3}}
The a(4) = 59 antichains:
  {1234}  {12}{134}   {12}{13}{14}   {12}{13}{14}{24}   {12}{13}{14}{24}{34}
          {12}{234}   {12}{13}{24}   {12}{13}{14}{34}   {12}{13}{23}{24}{34}
          {13}{124}   {12}{13}{34}   {12}{13}{23}{24}
          {13}{234}   {12}{14}{34}   {12}{13}{23}{34}
          {14}{123}   {12}{23}{24}   {12}{13}{24}{34}
          {14}{234}   {12}{23}{34}   {12}{14}{24}{34}
          {23}{124}   {12}{24}{34}   {12}{23}{24}{34}
          {23}{134}   {13}{14}{24}   {13}{14}{24}{34}
          {24}{134}   {13}{23}{24}   {13}{23}{24}{34}
          {34}{123}   {13}{23}{34}   {12}{13}{14}{234}
          {123}{124}  {13}{24}{34}   {12}{23}{24}{134}
          {123}{134}  {14}{24}{34}   {123}{124}{134}{234}
          {123}{234}  {12}{13}{234}
          {124}{134}  {12}{14}{234}
          {124}{234}  {12}{23}{134}
          {134}{234}  {12}{24}{134}
                      {13}{14}{234}
                      {13}{23}{124}
                      {14}{34}{123}
                      {23}{24}{134}
                      {12}{134}{234}
                      {13}{124}{234}
                      {14}{123}{234}
                      {23}{124}{134}
                      {123}{124}{134}
                      {123}{124}{234}
                      {123}{134}{234}
                      {124}{134}{234}
		

Crossrefs

Antichain covers are A006126.
Connected antichains are A048143.
Set partitions with different block-sums are A275780.
MM-numbers of multiset partitions with different part-sums are A326535.
Antichain covers with equal edge-sums are A326566.
The non-connected case is A326572.

A326570 Number of covering antichains of subsets of {1..n} with different edge-sizes.

Original entry on oeis.org

2, 1, 1, 4, 17, 186, 3292, 139161, 14224121
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sizes are the numbers of vertices in each edge, so for example the edge-sizes of {{1,3},{2,5},{3,4,5}} are {2,2,3}.

Examples

			The a(0) = 2 through a(4) = 17 antichains:
  {}    {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}
  {{}}                  {{1},{2,3}}  {{1},{2,3,4}}
                        {{2},{1,3}}  {{2},{1,3,4}}
                        {{3},{1,2}}  {{3},{1,2,4}}
                                     {{4},{1,2,3}}
                                     {{1,2},{1,3,4}}
                                     {{1,2},{2,3,4}}
                                     {{1,3},{1,2,4}}
                                     {{1,3},{2,3,4}}
                                     {{1,4},{1,2,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,3},{1,2,4}}
                                     {{2,3},{1,3,4}}
                                     {{2,4},{1,2,3}}
                                     {{2,4},{1,3,4}}
                                     {{3,4},{1,2,3}}
                                     {{3,4},{1,2,4}}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block sizes are A007837.
The case without singletons is A326569.
(Antichain) covers with equal edge-sizes are A306021.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Length[#1]==Length[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,6}]

Extensions

a(8) from Andrew Howroyd, Aug 13 2019

A327901 Nonprime squarefree numbers whose prime indices all have the same sum of prime indices (A056239).

Original entry on oeis.org

1, 35, 143, 209, 247, 391, 493, 629, 667, 851, 901, 1073, 1219, 1333, 1457, 1537, 1891, 1961, 2021, 2201, 2623, 2717, 2759, 2867, 2993, 3053, 3239, 3337, 3827, 3977, 4061, 4183, 4223, 4331, 4387, 4633, 5429, 5633, 5767, 5959, 6157, 6191, 6319, 7081, 7093, 7519
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
    35: {3,4}
   143: {5,6}
   209: {5,8}
   247: {6,8}
   391: {7,9}
   493: {7,10}
   629: {7,12}
   667: {9,10}
   851: {9,12}
   901: {7,16}
  1073: {10,12}
  1219: {9,16}
  1333: {11,14}
  1457: {11,15}
  1537: {10,16}
  1891: {11,18}
  1961: {12,16}
  2021: {14,15}
  2201: {11,20}
		

Crossrefs

The version including primes and nonsquarefree numbers is A326534.
The version for number of prime indices is A327900.
The version for mean of prime indices is A327902.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],!PrimeQ[#]&&SquareFreeQ[#]&&SameQ@@Total/@primeMS/@primeMS[#]&];
Showing 1-7 of 7 results.