cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A326574 Number of antichains of subsets of {1..n} with equal edge-sums.

Original entry on oeis.org

2, 3, 5, 10, 22, 61, 247, 2096, 81896, 52260575
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(0) = 2 through a(4) = 22 antichains:
  {}    {}     {}       {}           {}
  {{}}  {{}}   {{}}     {{}}         {{}}
        {{1}}  {{1}}    {{1}}        {{1}}
               {{2}}    {{2}}        {{2}}
               {{1,2}}  {{3}}        {{3}}
                        {{1,2}}      {{4}}
                        {{1,3}}      {{1,2}}
                        {{2,3}}      {{1,3}}
                        {{1,2,3}}    {{1,4}}
                        {{3},{1,2}}  {{2,3}}
                                     {{2,4}}
                                     {{3,4}}
                                     {{1,2,3}}
                                     {{1,2,4}}
                                     {{1,3,4}}
                                     {{2,3,4}}
                                     {{1,2,3,4}}
                                     {{3},{1,2}}
                                     {{4},{1,3}}
                                     {{1,4},{2,3}}
                                     {{2,4},{1,2,3}}
                                     {{3,4},{1,2,4}}
		

Crossrefs

Set partitions with equal block-sums are A035470.
Antichains with different edge-sums are A326030.
MM-numbers of multiset partitions with equal part-sums are A326534.
The covering case is A326566.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleqset[set_]:=stableSets[Subsets[set],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&];
    Table[Length[cleqset[Range[n]]],{n,0,5}]

Extensions

a(9) from Andrew Howroyd, Aug 13 2019

A326571 Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having different sums.

Original entry on oeis.org

1, 0, 1, 5, 61, 2721, 788221
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(3) = 5 antichains:
  {{1,2,3}}
  {{1,3},{2,3}}
  {{1,2},{2,3}}
  {{1,2},{1,3}}
  {{1,2},{1,3},{2,3}}
The a(4) = 61 antichains:
  {1234}  {12}{34}    {12}{13}{14}   {12}{13}{14}{24}   {12}{13}{14}{24}{34}
          {13}{24}    {12}{13}{24}   {12}{13}{14}{34}   {12}{13}{23}{24}{34}
          {12}{134}   {12}{13}{34}   {12}{13}{23}{24}
          {12}{234}   {12}{14}{34}   {12}{13}{23}{34}
          {13}{124}   {12}{23}{24}   {12}{13}{24}{34}
          {13}{234}   {12}{23}{34}   {12}{14}{24}{34}
          {14}{123}   {12}{24}{34}   {12}{23}{24}{34}
          {14}{234}   {13}{14}{24}   {13}{14}{24}{34}
          {23}{124}   {13}{23}{24}   {13}{23}{24}{34}
          {23}{134}   {13}{23}{34}   {12}{13}{14}{234}
          {24}{134}   {13}{24}{34}   {12}{23}{24}{134}
          {34}{123}   {14}{24}{34}   {123}{124}{134}{234}
          {123}{124}  {12}{13}{234}
          {123}{134}  {12}{14}{234}
          {123}{234}  {12}{23}{134}
          {124}{134}  {12}{24}{134}
          {124}{234}  {13}{14}{234}
          {134}{234}  {13}{23}{124}
                      {14}{34}{123}
                      {23}{24}{134}
                      {12}{134}{234}
                      {13}{124}{234}
                      {14}{123}{234}
                      {23}{124}{134}
                      {123}{124}{134}
                      {123}{124}{234}
                      {123}{134}{234}
                      {124}{134}{234}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block-sums are A275780.
MM-numbers of multiset partitions with different part-sums are A326535.
Antichain covers with equal edge-sums and no singletons are A326565.
Antichain covers with different edge-sizes and no singletons are A326569.
The case with singletons allowed is A326572.
Antichains with equal edge-sums are A326574.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

A326573 Number of connected antichains of subsets of {1..n}, all having different sums.

Original entry on oeis.org

1, 1, 1, 5, 59, 2689, 787382
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(3) = 5 antichains:
  {{1,2,3}}
  {{1,3},{2,3}}
  {{1,2},{2,3}}
  {{1,2},{1,3}}
  {{1,2},{1,3},{2,3}}
The a(4) = 59 antichains:
  {1234}  {12}{134}   {12}{13}{14}   {12}{13}{14}{24}   {12}{13}{14}{24}{34}
          {12}{234}   {12}{13}{24}   {12}{13}{14}{34}   {12}{13}{23}{24}{34}
          {13}{124}   {12}{13}{34}   {12}{13}{23}{24}
          {13}{234}   {12}{14}{34}   {12}{13}{23}{34}
          {14}{123}   {12}{23}{24}   {12}{13}{24}{34}
          {14}{234}   {12}{23}{34}   {12}{14}{24}{34}
          {23}{124}   {12}{24}{34}   {12}{23}{24}{34}
          {23}{134}   {13}{14}{24}   {13}{14}{24}{34}
          {24}{134}   {13}{23}{24}   {13}{23}{24}{34}
          {34}{123}   {13}{23}{34}   {12}{13}{14}{234}
          {123}{124}  {13}{24}{34}   {12}{23}{24}{134}
          {123}{134}  {14}{24}{34}   {123}{124}{134}{234}
          {123}{234}  {12}{13}{234}
          {124}{134}  {12}{14}{234}
          {124}{234}  {12}{23}{134}
          {134}{234}  {12}{24}{134}
                      {13}{14}{234}
                      {13}{23}{124}
                      {14}{34}{123}
                      {23}{24}{134}
                      {12}{134}{234}
                      {13}{124}{234}
                      {14}{123}{234}
                      {23}{124}{134}
                      {123}{124}{134}
                      {123}{124}{234}
                      {123}{134}{234}
                      {124}{134}{234}
		

Crossrefs

Antichain covers are A006126.
Connected antichains are A048143.
Set partitions with different block-sums are A275780.
MM-numbers of multiset partitions with different part-sums are A326535.
Antichain covers with equal edge-sums are A326566.
The non-connected case is A326572.

A326030 Number of antichains of subsets of {1..n} with different edge-sums.

Original entry on oeis.org

2, 3, 6, 19, 132, 3578, 826949
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(0) = 2 through a(3) = 19 antichains:
  {}    {}     {}         {}
  {{}}  {{}}   {{}}       {{}}
        {{1}}  {{1}}      {{1}}
               {{2}}      {{2}}
               {{1,2}}    {{3}}
               {{1},{2}}  {{1,2}}
                          {{1,3}}
                          {{2,3}}
                          {{1},{2}}
                          {{1,2,3}}
                          {{1},{3}}
                          {{2},{3}}
                          {{1},{2,3}}
                          {{2},{1,3}}
                          {{1,2},{1,3}}
                          {{1,2},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

Set partitions with different block-sums are A275780.
MM-numbers of multiset partitions with different part-sums are A326535.
The covering case is A326572.
Antichains with equal edge-sums are A326574.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleqset[set_]:=stableSets[Subsets[set],SubsetQ[#1,#2]||Total[#1]==Total[#2]&];
    Table[Length[cleqset[Range[n]]],{n,0,5}]

A326569 Number of covering antichains of subsets of {1..n} with no singletons and different edge-sizes.

Original entry on oeis.org

1, 0, 1, 1, 13, 121, 2566, 121199, 13254529
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sizes are the numbers of vertices in each edge, so for example the edge sizes of {{1,3},{2,5},{3,4,5}} are {2,2,3}.

Examples

			The a(2) = 1 through a(4) = 13 antichains:
  {{1,2}}  {{1,2,3}}  {{1,2,3,4}}
                      {{1,2},{1,3,4}}
                      {{1,2},{2,3,4}}
                      {{1,3},{1,2,4}}
                      {{1,3},{2,3,4}}
                      {{1,4},{1,2,3}}
                      {{1,4},{2,3,4}}
                      {{2,3},{1,2,4}}
                      {{2,3},{1,3,4}}
                      {{2,4},{1,2,3}}
                      {{2,4},{1,3,4}}
                      {{3,4},{1,2,3}}
                      {{3,4},{1,2,4}}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block sizes are A007837.
The case with singletons is A326570.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Length[#1]==Length[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,6}]

Formula

a(n) = A326570(n) - n*a(n-1) for n > 0. - Andrew Howroyd, Aug 13 2019

Extensions

a(8) from Andrew Howroyd, Aug 13 2019

A326570 Number of covering antichains of subsets of {1..n} with different edge-sizes.

Original entry on oeis.org

2, 1, 1, 4, 17, 186, 3292, 139161, 14224121
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sizes are the numbers of vertices in each edge, so for example the edge-sizes of {{1,3},{2,5},{3,4,5}} are {2,2,3}.

Examples

			The a(0) = 2 through a(4) = 17 antichains:
  {}    {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}
  {{}}                  {{1},{2,3}}  {{1},{2,3,4}}
                        {{2},{1,3}}  {{2},{1,3,4}}
                        {{3},{1,2}}  {{3},{1,2,4}}
                                     {{4},{1,2,3}}
                                     {{1,2},{1,3,4}}
                                     {{1,2},{2,3,4}}
                                     {{1,3},{1,2,4}}
                                     {{1,3},{2,3,4}}
                                     {{1,4},{1,2,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,3},{1,2,4}}
                                     {{2,3},{1,3,4}}
                                     {{2,4},{1,2,3}}
                                     {{2,4},{1,3,4}}
                                     {{3,4},{1,2,3}}
                                     {{3,4},{1,2,4}}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block sizes are A007837.
The case without singletons is A326569.
(Antichain) covers with equal edge-sizes are A306021.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Length[#1]==Length[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,6}]

Extensions

a(8) from Andrew Howroyd, Aug 13 2019

A327903 Number of set-systems covering n vertices where every edge has a different sum.

Original entry on oeis.org

1, 1, 5, 77, 7369, 10561753, 839653402893, 15924566366443524837, 315320784127456186118309342769, 29238175285109256786706269143580213236526609, 59347643832090275881798554403880633753161146711444051797893301
Offset: 0

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Comments

A set-system is a set of nonempty sets. It is covering if there are no isolated (uncovered) vertices.

Examples

			The a(3) = 77 set-systems:
  123  1-23    1-2-3      1-2-3-13      1-2-3-13-23     1-2-3-13-23-123
       2-13    1-2-13     1-2-3-23      1-2-12-13-23    1-2-12-13-23-123
       1-123   1-2-23     1-2-12-13     1-2-3-13-123
       12-13   1-3-23     1-2-12-23     1-2-3-23-123
       12-23   2-3-13     1-2-13-23     1-2-12-13-123
       13-23   1-12-13    1-2-3-123     1-2-12-23-123
       2-123   1-12-23    1-3-13-23     1-2-13-23-123
       3-123   1-13-23    2-3-13-23     1-3-13-23-123
       12-123  1-2-123    1-12-13-23    2-3-13-23-123
       13-123  1-3-123    1-2-12-123    1-12-13-23-123
       23-123  2-12-13    1-2-13-123    2-12-13-23-123
               2-12-23    1-2-23-123
               2-13-23    1-3-13-123
               2-3-123    1-3-23-123
               3-13-23    2-12-13-23
               1-12-123   2-3-13-123
               1-13-123   2-3-23-123
               12-13-23   1-12-13-123
               1-23-123   1-12-23-123
               2-12-123   1-13-23-123
               2-13-123   2-12-13-123
               2-23-123   2-12-23-123
               3-13-123   2-13-23-123
               3-23-123   3-13-23-123
               12-13-123  12-13-23-123
               12-23-123
               13-23-123
		

Crossrefs

The antichain case is A326572.
The graphical case is A327904.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    qes[n_]:=Select[stableSets[Subsets[Range[n],{1,n}],Total[#1]==Total[#2]&],Union@@#==Range[n]&];
    Table[Length[qes[n]],{n,0,4}]
  • PARI
    \\ by inclusion/exclusion on covered vertices.
    C(v)={my(u=Vecrev(-1 + prod(k=1, #v, 1 + x^v[k]))); prod(i=1, #u, 1 + u[i])}
    a(n)={my(s=0); forsubset(n, v, s += (-1)^(n-#v)*C(v)); s} \\ Andrew Howroyd, Oct 02 2019

Extensions

Terms a(4) and beyond from Andrew Howroyd, Oct 02 2019
Showing 1-7 of 7 results.