A326633 Sum of the fifth largest parts of the partitions of n into 10 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 6, 10, 12, 18, 24, 36, 42, 58, 71, 97, 114, 149, 176, 230, 266, 338, 394, 498, 575, 714, 832, 1028, 1183, 1439, 1656, 2011, 2290, 2735, 3115, 3711, 4195, 4936, 5574, 6533, 7335, 8523, 9549, 11060, 12334, 14162
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[Total[Select[IntegerPartitions[n,{10}],AllTrue[#,SquareFreeQ]&][[All,5]]],{n,0,60}] (* Harvey P. Dale, Sep 29 2021 *)
Formula
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2 * l, where mu is the Möbius function (A008683).