cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326658 a(n) = 6*floor(n/2) + ceiling((n-1)^2/2).

Original entry on oeis.org

1, 0, 7, 8, 17, 20, 31, 36, 49, 56, 71, 80, 97, 108, 127, 140, 161, 176, 199, 216, 241, 260, 287, 308, 337, 360, 391, 416, 449, 476, 511, 540, 577, 608, 647, 680, 721, 756, 799, 836, 881, 920, 967, 1008, 1057, 1100, 1151, 1196, 1249, 1296, 1351, 1400, 1457, 1508, 1567, 1620, 1681
Offset: 0

Views

Author

M. Ryan Julian Jr., Sep 12 2019

Keywords

Comments

a(n) gives the maximum number of inversions in a permutation on n + 3 symbols consisting of a single n-cycle and 3 fixed points.
Sequence is a diagonal of A326296.

Crossrefs

Diagonal of A326296.

Programs

  • Mathematica
    Table[6*Floor[n/2] + Ceiling[(n - 1)^2/2], {n, 80}] (* Wesley Ivan Hurt, Sep 13 2019 *)
  • PARI
    a(n) = 6*floor(n/2) + ceil((n-1)^2/2) \\ Andrew Howroyd, Sep 23 2019
    
  • PARI
    Vec((1 - 2*x + 7*x^2 - 4*x^3) / ((1 - x)^3*(1 + x)) + O(x^40)) \\ Andrew Howroyd, Sep 23 2019

Formula

a(n) = 6*floor(n/2) + ceiling((n-1)^2/2).
a(n) = A326296(3 + n, n) for n > 0.
From Colin Barker, Sep 13 2019: (Start)
G.f.: (1 - 2*x + 7*x^2 - 4*x^3) / ((1 - x)^3*(1 + x)).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n >= 4.
a(n) = (-3 + 7*(-1)^n + 8*n + 2*n^2) / 4.
(End)