cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A326678 Sum of all the parts in the partitions of n into 10 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 46, 48, 75, 104, 108, 140, 203, 240, 279, 352, 363, 476, 560, 648, 740, 950, 936, 1240, 1353, 1596, 1677, 2112, 2115, 2714, 2773, 3312, 3381, 4350, 4080, 5304, 5194, 6372, 6270, 8008
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Flatten[Select[IntegerPartitions[n,{10}],AllTrue[#,PrimeQ]&]]],{n,0,60}] (* Harvey P. Dale, Jan 31 2024 *)

Formula

a(n) = n * Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r), where c = A010051.
a(n) = n * A259201(n).
a(n) = A326679(n) + A326680(n) + A326681(n) + A326682(n) + A326683(n) + A326684(n) + A326685(n) + A326686(n) + A326687(n) + A326688(n).

A326680 Sum of the ninth largest parts of the partitions of n into 10 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 6, 8, 8, 10, 15, 17, 19, 23, 24, 30, 34, 38, 44, 54, 53, 67, 73, 83, 87, 105, 107, 131, 136, 156, 161, 200, 186, 233, 232, 275, 271, 335, 315, 398, 373, 456, 439, 550, 493, 636, 589
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[IntegerPartitions[n,{10}],AllTrue[#,PrimeQ]&][[All,9]]],{n,0,70}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 01 2019 *)

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r) * q, where c = A010051.
a(n) = A326678(n) - A326679(n) - A326681(n) - A326682(n) - A326683(n) - A326684(n) - A326685(n) - A326686(n) - A326687(n) - A326688(n).

A326681 Sum of the eighth largest parts of the partitions of n into 10 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 6, 8, 8, 11, 15, 18, 19, 25, 24, 32, 34, 42, 44, 59, 53, 74, 73, 92, 87, 120, 109, 150, 138, 180, 163, 229, 190, 273, 238, 321, 277, 395, 325, 472, 387, 548, 457, 657, 515, 768, 617
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[p * (PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[o] - PrimePi[o - 1]) (PrimePi[p] - PrimePi[p - 1]) (PrimePi[q] - PrimePi[q - 1]) (PrimePi[r] - PrimePi[r - 1]) (PrimePi[n - i - j - k - l - m - o - p - q - r] - PrimePi[n - i - j - k - l - m - o - p - q - r - 1]), {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r) * p, where c = A010051.
a(n) = A326678(n) - A326679(n) - A326680(n) - A326682(n) - A326683(n) - A326684(n) - A326685(n) - A326686(n) - A326687(n) - A326688(n).

A326682 Sum of the seventh largest parts of the partitions of n into 10 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 6, 8, 9, 11, 16, 18, 21, 25, 26, 32, 38, 42, 49, 59, 60, 74, 84, 94, 103, 124, 127, 154, 163, 186, 194, 239, 229, 285, 285, 337, 342, 421, 398, 504, 477, 586, 566, 709, 640, 828, 768
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[o * (PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[o] - PrimePi[o - 1]) (PrimePi[p] - PrimePi[p - 1]) (PrimePi[q] - PrimePi[q - 1]) (PrimePi[r] - PrimePi[r - 1]) (PrimePi[n - i - j - k - l - m - o - p - q - r] - PrimePi[n - i - j - k - l - m - o - p - q - r - 1]), {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r) * o, where c = A010051.
a(n) = A326678(n) - A326679(n) - A326680(n) - A326681(n) - A326683(n) - A326684(n) - A326685(n) - A326686(n) - A326687(n) - A326688(n).

A326683 Sum of the sixth largest parts in the partitions of n into 10 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 6, 9, 9, 12, 16, 20, 21, 27, 26, 36, 38, 47, 49, 68, 62, 86, 88, 111, 107, 145, 133, 183, 173, 220, 206, 287, 247, 341, 311, 411, 372, 509, 438, 610, 527, 713, 624, 865, 716, 1009
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[IntegerPartitions[n,{10}],AllTrue[#,PrimeQ]&][[All,6]]],{n,0,70}] (* Harvey P. Dale, Aug 12 2021 *)

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r) * m, where c = A010051.
a(n) = A326678(n) - A326679(n) - A326680(n) - A326681(n) - A326682(n) - A326684(n) - A326685(n) - A326686(n) - A326687(n) - A326688(n).

A326684 Sum of the fifth largest parts of the partitions of n into 10 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 7, 9, 10, 12, 18, 20, 23, 27, 30, 36, 45, 49, 59, 72, 75, 92, 106, 119, 130, 157, 165, 201, 210, 244, 257, 319, 307, 383, 386, 465, 463, 575, 547, 694, 654, 815, 784, 991, 896, 1163
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[l * (PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[o] - PrimePi[o - 1]) (PrimePi[p] - PrimePi[p - 1]) (PrimePi[q] - PrimePi[q - 1]) (PrimePi[r] - PrimePi[r - 1]) (PrimePi[n - i - j - k - l - m - o - p - q - r] - PrimePi[n - i - j - k - l - m - o - p - q - r - 1]), {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r) * l, where c = A010051.
a(n) = A326678(n) - A326679(n) - A326680(n) - A326681(n) - A326682(n) - A326683(n) - A326685(n) - A326686(n) - A326687(n) - A326688(n).

A326685 Sum of the fourth largest parts of the partitions of n into 10 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 5, 7, 10, 10, 14, 18, 22, 23, 33, 32, 44, 49, 60, 65, 88, 83, 116, 120, 145, 148, 196, 189, 250, 242, 301, 299, 395, 359, 478, 454, 570, 543, 718, 649, 864, 788, 1016, 952, 1255, 1102
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[k * (PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[o] - PrimePi[o - 1]) (PrimePi[p] - PrimePi[p - 1]) (PrimePi[q] - PrimePi[q - 1]) (PrimePi[r] - PrimePi[r - 1]) (PrimePi[n - i - j - k - l - m - o - p - q - r] - PrimePi[n - i - j - k - l - m - o - p - q - r - 1]), {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r) * k, where c = A010051.
a(n) = A326678(n) - A326679(n) - A326680(n) - A326681(n) - A326682(n) - A326683(n) - A326684(n) - A326686(n) - A326687(n) - A326688(n).

A326686 Sum of the third largest parts of the partitions of n into 10 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 5, 5, 8, 10, 12, 14, 22, 24, 30, 37, 41, 50, 65, 72, 83, 104, 108, 136, 154, 175, 189, 234, 241, 298, 314, 371, 384, 487, 472, 596, 604, 732, 729, 928, 889, 1134, 1089, 1360, 1318, 1685
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[j * (PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[o] - PrimePi[o - 1]) (PrimePi[p] - PrimePi[p - 1]) (PrimePi[q] - PrimePi[q - 1]) (PrimePi[r] - PrimePi[r - 1]) (PrimePi[n - i - j - k - l - m - o - p - q - r] - PrimePi[n - i - j - k - l - m - o - p - q - r - 1]), {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r) * j, where c = A010051.
a(n) = A326678(n) - A326679(n) - A326680(n) - A326681(n) - A326682(n) - A326683(n) - A326684(n) - A326685(n) - A326687(n) - A326688(n).

Extensions

Name clarified by Sean A. Irvine, Jan 12 2025

A326687 Sum of the second largest parts in the partitions of n into 10 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 5, 6, 8, 14, 14, 19, 26, 34, 38, 49, 53, 70, 81, 96, 105, 139, 140, 187, 204, 246, 263, 326, 341, 437, 452, 543, 562, 715, 700, 898, 904, 1100, 1101, 1387, 1343, 1720, 1643, 2037, 1982
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[IntegerPartitions[n,{10}],AllTrue[#,PrimeQ]&][[All,2]]],{n,0,70}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 04 2021 *)

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r) * i, where c is the prime characteristic (A010051).
a(n) = A326678(n) - A326679(n) - A326680(n) - A326681(n) - A326682(n) - A326683(n) - A326684(n) - A326685(n) - A326686(n) - A326688(n).

A326688 Sum of the largest parts of the partitions of n into 10 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 8, 8, 15, 20, 20, 27, 43, 50, 67, 83, 85, 116, 144, 164, 202, 253, 254, 341, 385, 448, 485, 600, 609, 779, 827, 957, 1017, 1281, 1230, 1586, 1584, 1890, 1944, 2411, 2301, 2956, 2840, 3483
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[(n-i-j-k-l-m-o-p-q-r) * (PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[o] - PrimePi[o - 1]) (PrimePi[p] - PrimePi[p - 1]) (PrimePi[q] - PrimePi[q - 1]) (PrimePi[r] - PrimePi[r - 1]) (PrimePi[n - i - j - k - l - m - o - p - q - r] - PrimePi[n - i - j - k - l - m - o - p - q - r - 1]), {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r) * (n-i-j-k-l-m-o-p-q-r), where c = A010051.
a(n) = A326678(n) - A326679(n) - A326680(n) - A326681(n) - A326682(n) - A326683(n) - A326684(n) - A326685(n) - A326686(n) - A326687(n).
Showing 1-10 of 10 results.