A249795 Self-avoiding walks with n steps on the truncated trihexagonal tiling or (4,6,12) lattice.
1, 3, 6, 12, 22, 42, 78, 146, 264, 490, 894, 1646, 3012, 5528, 10086, 18476, 33648, 61472, 111702, 203552, 368872, 670538, 1213118, 2201208, 3980380, 7214200, 13044916, 23627064, 42714902, 77316682, 139695536, 252664214, 456138008, 824332804, 1487051098, 2685425808
Offset: 0
Examples
There are 6 paths of length 2 on the (4,6,12) lattice corresponding to the reduced words in the Coxeter group s_0 s_2, s_0 s_1, s_1 s_2, s_1 s_0, s_2 s_0, s_2 s_1.
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 0..47 (from Alm, 2005; terms 0..42 from Sean A. Irvine)
- Sven Erick Alm, Upper and lower bounds for the connective constants of self-avoiding walks on the Archimedean and Laves lattices, J. Phys. A.: Math. Gen., 38 (2005), 2055-2080. Also technical report of the same name, 2004. See Table 2, column (4.6.12).
- Sean A. Irvine, Java program (github)
- Wikipedia, truncated trihexagonal tiling
Crossrefs
Extensions
a(15)-a(19) corrected by Mike Zabrocki and Sean A. Irvine, Jul 25 2019
More terms from Sean A. Irvine, Jul 25 2019
Comments