cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326814 Dirichlet g.f.: (1/zeta(s)) * Product_{p prime} (1 - 2 * p^(-s)).

Original entry on oeis.org

1, -3, -3, 2, -3, 9, -3, 0, 2, 9, -3, -6, -3, 9, 9, 0, -3, -6, -3, -6, 9, 9, -3, 0, 2, 9, 0, -6, -3, -27, -3, 0, 9, 9, 9, 4, -3, 9, 9, 0, -3, -27, -3, -6, -6, 9, -3, 0, 2, -6, 9, -6, -3, 0, 9, 0, 9, 9, -3, 18, -3, 9, -6, 0, 9, -27, -3, -6, 9, -27, -3, 0, -3, 9, -6
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 19 2019

Keywords

Comments

Moebius transform applied twice to A076479 (unitary Moebius function).

Crossrefs

Cf. A001221, A007428, A008683, A046099 (positions of 0's), A076479, A182139 (Dirichlet inverse), A226177, A326415, A326815.

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] MoebiusMu[d] 2^PrimeNu[d], {d, Divisors[n]}], {n, 1, 75}]
    f[p_, e_] := Which[e == 1, -3, e == 2, 2, e > 2, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*moebius(d)*2^omega(d)); \\ Michel Marcus, Oct 26 2020
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X)*(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021

Formula

a(n) = Sum_{d|n} mu(n/d) * mu(d) * 2^omega(d), where mu = A008683 and omega = A001221.
Multiplicative with a(p^e) = -3 if e = 1, 2 if e = 2, and 0 otherwise. - Amiram Eldar, Oct 26 2020