cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A367862 Number of n-vertex labeled simple graphs with the same number of edges as covered vertices.

Original entry on oeis.org

1, 1, 1, 2, 20, 308, 5338, 105298, 2366704, 60065072, 1702900574, 53400243419, 1836274300504, 68730359299960, 2782263907231153, 121137565273808792, 5645321914669112342, 280401845830658755142, 14788386825536445299398, 825378055206721558026931, 48604149005046792753887416
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2023

Keywords

Comments

Unlike the connected case (A057500), these graphs may have more than one cycle; for example, the graph {{1,2},{1,3},{1,4},{2,3},{2,4},{5,6}} has multiple cycles.

Examples

			Non-isomorphic representatives of the a(4) = 20 graphs:
  {}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,4},{2,3}}
  {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

The connected case is A057500, unlabeled A001429.
Counting all vertices (not just covered) gives A116508.
The covering case is A367863, unlabeled A006649.
For set-systems we have A367916, ranks A367917.
A001187 counts connected graphs, A001349 unlabeled.
A003465 counts covering set-systems, unlabeled A055621, ranks A326754.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A133686 = graphs satisfy strict AoC, connected A129271, covering A367869.
A143543 counts simple labeled graphs by number of connected components.
A323818 counts connected set-systems, unlabeled A323819, ranks A326749.
A367867 = graphs contradict strict AoC, connected A140638, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]==Length[Union@@#]&]],{n,0,5}]
  • PARI
    \\ Here b(n) is A367863(n)
    b(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n))
    a(n) = sum(k=0, n, binomial(n,k) * b(k)) \\ Andrew Howroyd, Dec 29 2023

Formula

Binomial transform of A367863.

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 29 2023

A072446 Number of connectedness systems on n vertices that contain all singletons.

Original entry on oeis.org

1, 1, 2, 12, 420, 254076, 18689059680
Offset: 0

Views

Author

Wim van Dam (vandam(AT)cs.berkeley.edu), Jun 18 2002

Keywords

Comments

From Gus Wiseman, Jul 31 2019: (Start)
If we define a connectedness system to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges, then a(n) is the number of connectedness systems on n vertices without singleton edges. The BII-numbers of these set-systems are given by A326873. The a(3) = 12 connectedness systems without singletons are:
{}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
(End)

Examples

			a(3)=12 because of the 12 sets:
{{1}, {2}, {3}};
{{1}, {2}, {3}, {1, 2}};
{{1}, {2}, {3}, {1, 3}};
{{1}, {2}, {3}, {2, 3}};
{{1}, {2}, {3}, {1, 2, 3}};
{{1}, {2}, {3}, {1, 2}, {1, 2, 3}};
{{1}, {2}, {3}, {1, 3}, {1, 2, 3}};
{{1}, {2}, {3}, {2, 3}, {1, 2, 3}};
{{1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}};
{{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}};
{{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}};
{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
		

Crossrefs

The unlabeled case is A072444.
Exponential transform of A072447 (the connected case).
The case with singletons is A326866.
Binomial transform of A326877 (the covering case).

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)

Formula

a(n) = A326866(n)/2^n. - Gus Wiseman, Jul 31 2019

Extensions

a(6) corrected and definition reformulated by Christian Sievers, Oct 26 2023
a(0)=1 prepended by Sean A. Irvine, Oct 02 2024

A072447 Number of connectedness systems on n vertices that contain all singletons and the set of all the vertices.

Original entry on oeis.org

1, 1, 8, 378, 252000, 18687534984
Offset: 1

Views

Author

Wim van Dam (vandam(AT)cs.berkeley.edu), Jun 18 2002

Keywords

Comments

Previous name was: a(1) = 1; for n > 1, a(n) = number of families of subsets of {1, ..., n} that contain both the universe and the empty set, are closed under union of nondisjoint sets, and contain no singletons.
A connectedness system is (as below) a set of (finite) nonempty sets that is closed under union of nondisjoint sets.
The old definition was: "Number of subsets S of the power set P{1,2,...,n} such that: {1}, {2},..., {n} are all elements of S; {1,2,...n} is an element of S; if X and Y are elements of S and X and Y have a nonempty intersection, then the union of X and Y is an element of S."
Comments on the old definition from Gus Wiseman, Aug 01 2019: (Start)
If this sequence were defined similarly to A326877, we would have a(1) = 0.
We define a connectedness system to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges. It is connected if it is empty or contains an edge with all the vertices. a(n) is the number of connected connectedness systems on n vertices without singletons. For example, the a(3) = 8 connected connectedness systems without singletons are:
{{1,2,3}}
{{1,2},{1,2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
(End)
Conjecture concerning the original definition: a(n) is also the number of families of subsets of {1, ..., n} that contain both the universe and the empty set, are closed under intersection and contain no sets of cardinality n-1. - Tian Vlasic, Nov 04 2022. [This was false, as pointed out by Christian Sievers, Oct 20 2023. It is easy to see that for n>1, a(n) is also the number of families of subsets of {1, ..., n} that contain both the universe and the empty set, are closed under union of nondisjoint sets, and contain no singletons; whereas by duality, the sequence suggested in the conjecture is also the number of those families that are also closed under arbitrary union. For details see the Sievers link. - N. J. A. Sloane, Oct 21 2023]

Examples

			a(3) = 8 because of the 8 sets: {{1}, {2}, {3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 2}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {2, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
		

Crossrefs

The unlabeled case is A072445.
The non-connected case is A072446.
The case with singletons is A326868.
The covering version is A326877.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],(n==0||MemberQ[#,Range[n]])&&SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,4}] (* returns a(1) = 0 similar to A326877. - Gus Wiseman, Aug 01 2019 *)

Formula

a(n > 1) = A326868(n)/2^n. - Gus Wiseman, Aug 01 2019

Extensions

Edited by N. J. A. Sloane, Oct 21 2023 (a(6) corrected by Christian Sievers, Oct 20 2023)
Edited by Christian Sievers, Oct 26 2023

A326870 Number of connectedness systems covering n vertices.

Original entry on oeis.org

1, 1, 5, 77, 6377, 8097721, 1196051135917
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges. It is covering if every vertex belongs to some edge.

Examples

			The a(2) = 5 connectedness systems:
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Inverse binomial transform of A326866 (the non-covering case).
Exponential transform of A326868 (the connected case).
The unlabeled case is A326871.
The BII-numbers of these set-systems are A326872.
The case without singletons is A326877.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,4}]

Extensions

a(6) corrected by Christian Sievers, Oct 28 2023

A326873 BII-numbers of connectedness systems without singletons.

Original entry on oeis.org

0, 4, 16, 32, 64, 68, 80, 84, 96, 100, 112, 116, 256, 288, 512, 528, 1024, 1028, 1280, 1284, 1536, 1540, 1792, 1796, 2048, 2052, 4096, 4112, 4352, 4368, 6144, 6160, 6400, 6416, 8192, 8224, 8704, 8736, 10240, 10272, 10752, 10784, 16384, 16388, 16400, 16416
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The enumeration of these set-systems by number of covered vertices is given by A326877.

Examples

			The sequence of all connectedness systems without singletons together with their BII-numbers begins:
     0: {}
     4: {{1,2}}
    16: {{1,3}}
    32: {{2,3}}
    64: {{1,2,3}}
    68: {{1,2},{1,2,3}}
    80: {{1,3},{1,2,3}}
    84: {{1,2},{1,3},{1,2,3}}
    96: {{2,3},{1,2,3}}
   100: {{1,2},{2,3},{1,2,3}}
   112: {{1,3},{2,3},{1,2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
   256: {{1,4}}
   288: {{2,3},{1,4}}
   512: {{2,4}}
   528: {{1,3},{2,4}}
  1024: {{1,2,4}}
  1028: {{1,2},{1,2,4}}
  1280: {{1,4},{1,2,4}}
  1284: {{1,2},{1,4},{1,2,4}}
		

Crossrefs

Connectedness systems without singletons are counted by A072446, with unlabeled case A072444.
Connectedness systems are counted by A326866, with unlabeled case A326867.
BII-numbers of connectedness systems are A326872.
The connected case is A326879.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    connnosQ[eds_]:=!MemberQ[Length/@eds,1]&&SubsetQ[eds,Union@@@Select[Tuples[eds,2],Intersection@@#!={}&]];
    Select[Range[0,1000],connnosQ[bpe/@bpe[#]]&]

A326899 Number of unlabeled connectedness systems covering n vertices without singletons.

Original entry on oeis.org

1, 0, 1, 4, 41, 3048, 26894637
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges.

Examples

			Non-isomorphic representatives of the a(3) = 4 connectedness systems:
  {{1,2,3}}
  {{2,3},{1,2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The case with singletons is A326871.
First differences of A072444 (the non-covering case).
Euler transform of A072445 (the connected case).
The labeled version is A326877.

Extensions

a(6) corrected by Andrew Howroyd, Oct 28 2023
Showing 1-6 of 6 results.