A326882 Irregular triangle read by rows where T(n,k) is the number of finite topologies with n points and k nonempty open sets, 0 <= k <= 2^n - 1.
1, 0, 1, 0, 1, 2, 1, 0, 1, 6, 9, 6, 6, 0, 1, 0, 1, 14, 43, 60, 72, 54, 54, 20, 24, 0, 12, 0, 0, 0, 1, 0, 1, 30, 165, 390, 630, 780, 955, 800, 900, 500, 660, 240, 390, 120, 190, 10, 100, 0, 60, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 2 1 0 1 6 9 6 6 0 1 0 1 14 43 60 72 54 54 20 24 0 12 0 0 0 1 Row n = 3 counts the following topologies: {}{123} {}{1}{123} {}{1}{12}{123} {}{1}{2}{12}{123} {}{1}{2}{12}{13}{123} {}{2}{123} {}{1}{13}{123} {}{1}{3}{13}{123} {}{1}{2}{12}{23}{123} {}{3}{123} {}{1}{23}{123} {}{2}{3}{23}{123} {}{1}{3}{12}{13}{123} {}{12}{123} {}{2}{12}{123} {}{1}{12}{13}{123} {}{1}{3}{13}{23}{123} {}{13}{123} {}{2}{13}{123} {}{2}{12}{23}{123} {}{2}{3}{12}{23}{123} {}{23}{123} {}{2}{23}{123} {}{3}{13}{23}{123} {}{2}{3}{13}{23}{123} {}{3}{12}{123} {}{3}{13}{123} {}{1}{2}{3}{12}{13}{23}{123} {}{3}{23}{123}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..254
- Wikipedia, Topological space
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n]],{k}],MemberQ[#,{}]&&MemberQ[#,Range[n]]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4},{k,2^n}]
Extensions
Terms a(31) and beyond from Andrew Howroyd, Aug 10 2019