A326981 Total number of composite parts in all partitions of n.
0, 0, 0, 0, 1, 1, 3, 4, 9, 13, 22, 31, 51, 70, 105, 145, 210, 283, 398, 530, 726, 958, 1283, 1673, 2212, 2854, 3714, 4756, 6119, 7764, 9893, 12457, 15728, 19674, 24636, 30615, 38079, 47034, 58109, 71396, 87692, 107179, 130943, 159278, 193619, 234486, 283720
Offset: 0
Keywords
Examples
For n = 6 we have: -------------------------------------- . Number of Partitions composite of 6 parts -------------------------------------- 6 .......................... 1 3 + 3 ...................... 0 4 + 2 ...................... 1 2 + 2 + 2 .................. 0 5 + 1 ...................... 0 3 + 2 + 1 .................. 0 4 + 1 + 1 .................. 1 2 + 2 + 1 + 1 .............. 0 3 + 1 + 1 + 1 .............. 0 2 + 1 + 1 + 1 + 1 .......... 0 1 + 1 + 1 + 1 + 1 + 1 ...... 0 ------------------------------------ Total ...................... 3 So a(6) = 3.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0], b(n, i-1)+ (p-> p+[0, `if`(isprime(i), 0, p[1])])(b(n-i, min(n-i, i)))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 13 2019
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0 || i==1, {1, 0}, b[n, i-1] + # + {0, If[PrimeQ[i], 0, #[[1]]]}&[b[n-i, Min[n-i, i]]]]; a[n_] := b[n, n][[2]]; a /@ Range[0, 50] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)