A326982 Total sum of composite parts in all partitions of n.
0, 0, 0, 0, 4, 4, 14, 18, 44, 67, 117, 166, 283, 391, 603, 848, 1250, 1702, 2442, 3280, 4565, 6094, 8266, 10878, 14566, 18970, 24953, 32255, 41909, 53619, 68983, 87542, 111496, 140561, 177436, 222125, 278425, 346293, 430951, 533083, 659268, 810948, 997322
Offset: 0
Keywords
Examples
For n = 6 we have: -------------------------------------- Partitions Sum of of 6 composite parts -------------------------------------- 6 .......................... 6 3 + 3 ...................... 0 4 + 2 ...................... 4 2 + 2 + 2 .................. 0 5 + 1 ...................... 0 3 + 2 + 1 .................. 0 4 + 1 + 1 .................. 4 2 + 2 + 1 + 1 .............. 0 3 + 1 + 1 + 1 .............. 0 2 + 1 + 1 + 1 + 1 .......... 0 1 + 1 + 1 + 1 + 1 + 1 ...... 0 -------------------------------------- Total ..................... 14 So a(6) = 14.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..8000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0], b(n, i-1)+ (p-> p+[0, `if`(isprime(i), 0, p[1]*i)])(b(n-i, min(n-i, i)))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 13 2019
-
Mathematica
Table[Total[Select[Flatten[IntegerPartitions[n]],CompositeQ]],{n,0,50}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 19 2020 *) b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, 0}, b[n, i - 1] + With[{p = b[n-i, Min[n-i, i]]}, p+{0, If[PrimeQ[i], 0, p[[1]]*i]}]]; a[n_] := b[n, n][[2]]; a /@ Range[0, 50] (* Jean-François Alcover, Jun 07 2021, after Alois P. Heinz *)