A326958 Total sum of noncomposite parts in all partitions of n.
0, 1, 4, 9, 16, 31, 52, 87, 132, 203, 303, 450, 641, 922, 1287, 1792, 2446, 3347, 4488, 6030, 7975, 10538, 13778, 17987, 23234, 29980, 38383, 49015, 62195, 78766, 99137, 124560, 155672, 194158, 241104, 298780, 368747, 454276, 557619, 683132, 834252, 1016955
Offset: 0
Keywords
Examples
For n = 6 we have: -------------------------------------- . Sum of Partitions noncomposite of 6 parts -------------------------------------- 6 .......................... 0 3 + 3 ...................... 6 4 + 2 ...................... 2 2 + 2 + 2 .................. 6 5 + 1 ...................... 6 3 + 2 + 1 .................. 6 4 + 1 + 1 .................. 2 2 + 2 + 1 + 1 .............. 6 3 + 1 + 1 + 1 .............. 6 2 + 1 + 1 + 1 + 1 .......... 6 1 + 1 + 1 + 1 + 1 + 1 ...... 6 ------------------------------------ Total ..................... 52 So a(6) = 52.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], b(n, i-1)+ (p-> p+[0, `if`(isprime(i), p[1]*i, 0)])(b(n-i, min(n-i, i)))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 13 2019
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0 || i==1, {1, n}, b[n, i-1] + # + {0, If[PrimeQ[i], #[[1]] i, 0]}&[b[n-i, Min[n-i, i]]]]; a[n_] := b[n, n][[2]]; a /@ Range[0, 50] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)