cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326982 Total sum of composite parts in all partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 4, 4, 14, 18, 44, 67, 117, 166, 283, 391, 603, 848, 1250, 1702, 2442, 3280, 4565, 6094, 8266, 10878, 14566, 18970, 24953, 32255, 41909, 53619, 68983, 87542, 111496, 140561, 177436, 222125, 278425, 346293, 430951, 533083, 659268, 810948, 997322
Offset: 0

Views

Author

Omar E. Pol, Aug 09 2019

Keywords

Examples

			For n = 6 we have:
--------------------------------------
Partitions                Sum of
of 6                  composite parts
--------------------------------------
6 .......................... 6
3 + 3 ...................... 0
4 + 2 ...................... 4
2 + 2 + 2 .................. 0
5 + 1 ...................... 0
3 + 2 + 1 .................. 0
4 + 1 + 1 .................. 4
2 + 2 + 1 + 1 .............. 0
3 + 1 + 1 + 1 .............. 0
2 + 1 + 1 + 1 + 1 .......... 0
1 + 1 + 1 + 1 + 1 + 1 ...... 0
--------------------------------------
Total ..................... 14
So a(6) = 14.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0], b(n, i-1)+
          (p-> p+[0, `if`(isprime(i), 0, p[1]*i)])(b(n-i, min(n-i, i))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 13 2019
  • Mathematica
    Table[Total[Select[Flatten[IntegerPartitions[n]],CompositeQ]],{n,0,50}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 19 2020 *)
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, 0}, b[n, i - 1] +
         With[{p = b[n-i, Min[n-i, i]]}, p+{0, If[PrimeQ[i], 0, p[[1]]*i]}]];
    a[n_] := b[n, n][[2]];
    a /@ Range[0, 50] (* Jean-François Alcover, Jun 07 2021, after Alois P. Heinz *)

Formula

a(n) = A194545(n) - A000070(n-1), n >= 1.
a(n) = A066186(n) - A326958(n).