cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327095 Expansion of Sum_{k>=1} k * x^k * (1 - x^k + x^(2*k)) / (1 - x^(4*k)).

Original entry on oeis.org

1, 1, 4, 2, 6, 4, 8, 4, 13, 6, 12, 8, 14, 8, 24, 8, 18, 13, 20, 12, 32, 12, 24, 16, 31, 14, 40, 16, 30, 24, 32, 16, 48, 18, 48, 26, 38, 20, 56, 24, 42, 32, 44, 24, 78, 24, 48, 32, 57, 31, 72, 28, 54, 40, 72, 32, 80, 30, 60, 48, 62, 32, 104, 32, 84, 48
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 13 2019

Keywords

Crossrefs

Cf. A002131, A115607, A285895, A316631 (Moebius transform).

Programs

  • Maple
    N:= 100:
    G:= add(k * x^k * (1 - x^k + x^(2*k)) / (1 - x^(4*k)),k=1..N):
    S:= series(G,x,N+1):
    [seq(coeff(S,x,i),i=1..N)];# Robert Israel, Sep 17 2019
  • Mathematica
    nmax = 66; CoefficientList[Series[Sum[k x^k (1 - x^k + x^(2 k))/(1 - x^(4 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    A002131[n_] := Total[Select[Divisors[n], OddQ[n/#] &]]; a[n_] := If[OddQ[n], A002131[n], A002131[n] - A002131[n/2]]; Table[a[n], {n, 1, 66}]
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); f[2, e_] := 2^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2022 *)
  • PARI
    a(n)={sumdiv(n, d, d*((n/d%2==1) - (n/d%4==2)))} \\ Andrew Howroyd, Sep 13 2019

Formula

G.f.: Sum_{k>=1} x^k * (1 + 3 * x^(2*k) + x^(3*k) + 3 * x^(4*k) + x^(6*k)) / (1 - x^(4*k))^2.
a(n) = Sum_{d|n, n/d odd} d - Sum_{d|n, n/d twice odd} d.
a(n) = A002131(n) if n odd, A002131(n) - A002131(n/2) if n even.
From Amiram Eldar, Dec 05 2022: (Start)
Multiplicative with a(2^e) = 2^(e-1), and a(p^e) = (p^(e+1)-1)/(p-1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*Pi^2/64 = 0.462637... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/2^s)^2. - Amiram Eldar, Jan 06 2023