A327295 Numbers k such that e(k) > 1 and k == e(k) (mod lambda(k)), where e(k) = A051903(k) is the maximal exponent in prime factorization of k.
4, 12, 16, 48, 80, 112, 132, 208, 240, 1104, 1456, 1892, 2128, 4144, 5852, 12208, 17292, 18544, 21424, 25456, 30160, 45904, 78736, 97552, 106384, 138864, 153596, 154960, 160528, 289772, 311920, 321904, 399212, 430652, 545584, 750064, 770704, 979916, 1037040, 1058512
Offset: 1
Keywords
Examples
The number 4 = 2^2 is a term, because e(4) = A051903(4) = 2 > 1 and 4 == 2 (mod lambda(4)), where lambda(4) = A002322(4) = 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
Select[Range[10^5], (e = Max @@ Last /@ FactorInteger[#]) > 1 && Divisible[# -e, CarmichaelLambda[#]] &] (* Amiram Eldar, Dec 05 2019 *)
-
PARI
isok(n) = ! issquarefree(n) && (Mod(n, lcm(znstar(n)[2])) == vecmax(factor(n)[, 2])); \\ Michel Marcus, Dec 05 2019
Extensions
More terms from Amiram Eldar, Dec 05 2019
Comments