A327367 Number of labeled simple graphs with n vertices, at least one of which is isolated.
0, 1, 1, 4, 23, 256, 5319, 209868, 15912975, 2343052576, 675360194287, 383292136232380, 430038382710483623, 956430459603341708896, 4224538833207707658410103, 37106500399796746894085512140, 648740170822904504303462104598943
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, 2^binomial(n, 2)-add(b(k)*binomial(n, k), k=0..n-1)) end: a:= n-> 2^(n*(n-1)/2)-b(n): seq(a(n), n=0..17); # Alois P. Heinz, Sep 04 2019
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#!=Range[n]&]],{n,0,5}]
-
PARI
b(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2)); \\ A006129 a(n) = 2^(n*(n-1)/2) - b(n); \\ Michel Marcus, Sep 05 2019