A327388 Number of colored integer partitions of n such that ten colors are used and parts differ by size or by color.
1, 10, 65, 320, 1320, 4762, 15500, 46410, 129710, 341990, 857695, 2059430, 4759235, 10630810, 23034880, 48562378, 99866045, 200766810, 395317950, 763661010, 1449390299, 2706189810, 4976391015, 9021860260, 16139848000, 28515535112, 49792637480, 85989053350
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..10000 (terms n = 5001..8000 from Vaclav Kotesovec)
- Wikipedia, Partition (number theory)
Crossrefs
Column k=10 of A308680.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(10): seq(a(n), n=10..45);
-
Mathematica
A327388[n_] := SeriesCoefficient[(Product[(1 + x^k), {k, 1, n}] - 1)^10, {x, 0, n}]; Table[A327388[n], {n, 10, 37}] (* Robert P. P. McKone, Jan 31 2021 *)
Formula
a(n) ~ exp(Pi*sqrt(10*n/3)) * 5^(1/4) / (2^(25/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 16 2019
G.f.: (-1 + Product_{k>=1} (1 + x^k))^10. - Ilya Gutkovskiy, Jan 31 2021
Comments