A308680
Number T(n,k) of colored integer partitions of n such that all colors from a k-set are used and parts differ by size or by color; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 3, 8, 9, 4, 1, 0, 4, 14, 19, 14, 5, 1, 0, 5, 22, 39, 36, 20, 6, 1, 0, 6, 34, 72, 85, 60, 27, 7, 1, 0, 8, 50, 128, 180, 160, 92, 35, 8, 1, 0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1, 0, 12, 104, 354, 680, 845, 720, 434, 184, 54, 10, 1
Offset: 0
T(4,1) = 2: 3a1a, 4a.
T(4,2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
T(4,3) = 3: 2a1b1c, 2b1a1c, 2c1a1b.
T(4,4) = 1: 1a1b1c1d.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 2, 5, 3, 1;
0, 3, 8, 9, 4, 1;
0, 4, 14, 19, 14, 5, 1;
0, 5, 22, 39, 36, 20, 6, 1;
0, 6, 34, 72, 85, 60, 27, 7, 1;
0, 8, 50, 128, 180, 160, 92, 35, 8, 1;
0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1;
...
Columns k=0-10 give:
A000007,
A000009 (for n>0),
A327380,
A327381,
A327382,
A327383,
A327384,
A327385,
A327386,
A327387,
A327388.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
T:= proc(n, k) option remember;
`if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, b(n)),
(q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jan 31 2021
# Uses function PMatrix from A357368.
PMatrix(10, A000009); # Peter Luschny, Oct 19 2022
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]*Binomial[k, j]][n - i*j], {j, 0, Min[k, n/i]}]]];
T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)
A341236
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^10.
Original entry on oeis.org
1, 20, 210, 1550, 9055, 44624, 192945, 751480, 2686155, 8934560, 27946335, 82884860, 234636435, 637416140, 1669127130, 4228739712, 10398140075, 24882425770, 58080468790, 132508486900, 296005537183, 648445364080, 1394961003490, 2950516502980, 6142674032345, 12599932782780
Offset: 10
Cf.
A000041,
A023009,
A048574,
A327388,
A341221,
A341222,
A341223,
A341225,
A341226,
A341227,
A341228.
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 10):
seq(a(n), n=10..35); # Alois P. Heinz, Feb 07 2021
-
nmax = 35; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^10, {x, 0, nmax}], x] // Drop[#, 10] &
A341394
Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^10.
Original entry on oeis.org
1, 20, 230, 1940, 13285, 77944, 405250, 1910330, 8300380, 33655860, 128574734, 466317760, 1615509765, 5373215450, 17230062315, 53457917856, 160963157005, 471587847690, 1347417640405, 3761860656610, 10280578499844, 27543107112940, 72440412567485
Offset: 10
Cf.
A026007,
A321955,
A327388,
A341384,
A341385,
A341386,
A341387,
A341388,
A341390,
A341391,
A341393.
-
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/
`if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 10):
seq(a(n), n=10..32); # Alois P. Heinz, Feb 10 2021
-
nmax = 32; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^10, {x, 0, nmax}], x] // Drop[#, 10] &
A341253
Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^10.
Original entry on oeis.org
1, 0, 10, 10, 55, 100, 265, 560, 1175, 2420, 4667, 9000, 16575, 30180, 53470, 93152, 159395, 268190, 444910, 727360, 1174563, 1873320, 2955010, 4611960, 7127305, 10912244, 16560430, 24924550, 37217620, 55160650, 81174270, 118651560, 172316445, 248718830, 356892660
Offset: 10
Cf.
A000700,
A001488,
A022605,
A327388,
A338463,
A341236,
A341241,
A341243,
A341244,
A341245,
A341246,
A341247,
A341251.
-
g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 10):
seq(a(n), n=10..44); # Alois P. Heinz, Feb 07 2021
-
nmax = 44; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^10, {x, 0, nmax}], x] // Drop[#, 10] &
A341371
Expansion of (1 / theta_4(x) - 1)^10 / 1024.
Original entry on oeis.org
1, 20, 220, 1750, 11220, 61424, 297485, 1305260, 5276930, 19905700, 70742012, 238662710, 769055130, 2378885080, 7093202060, 20459149350, 57254003225, 155851688980, 413590326020, 1072076963640, 2719067915088, 6757856447720, 16480738170760, 39486206985530, 93043172921735
Offset: 10
Cf.
A002448,
A004411,
A014968,
A015128,
A327388,
A338223,
A340947,
A341236,
A341364,
A341365,
A341366,
A341367,
A341368,
A341369,
A341370.
-
g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 10):
seq(a(n), n=10..34); # Alois P. Heinz, Feb 10 2021
-
nmax = 34; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^10/1024, {x, 0, nmax}], x] // Drop[#, 10] &
nmax = 34; CoefficientList[Series[(1/1024) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^10, {x, 0, nmax}], x] // Drop[#, 10] &
Showing 1-5 of 5 results.
Comments