cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A327479 a(n) is the minimum number of squares of unit area that must be removed from an n X n square to obtain a connected figure without holes and of the longest perimeter.

Original entry on oeis.org

0, 0, 0, 4, 6, 12, 16, 28, 32, 44, 52, 68, 76, 92, 104, 124, 136, 156, 172, 196, 212, 236, 256, 284, 304, 332, 356, 388, 412, 444, 472, 508, 536, 572, 604, 644, 676, 716, 752, 796, 832, 876, 916, 964, 1004, 1052, 1096, 1148, 1192, 1244, 1292, 1348, 1396, 1452, 1504
Offset: 0

Views

Author

Stefano Spezia, Sep 16 2019

Keywords

Comments

a(n) is equal to h_1(n) as defined in A309038.
All the terms are even numbers (A005843).

Examples

			Illustrations for n = 3..8:
      __    __               __    __.__             __    __.__.__
     |__|__|__|             |__|__|__.__|           |__|__|__.__.__|
      __|__|__               __|__|__.__             __|__|__    __
     |__|  |__|             |  |  |     |           |  |  |__|__|__|
                            |__|  |__.__|           |  |   __|__|__
                                                    |__|  |__|  |__|
      a(3) = 4                a(4) = 6                  a(5) = 12
   __    __    __.__     __    __    __    __     __    __    __    __.__
  |__|__|__|  |__   |   |__|__|__|  |__|__|__|   |__|__|__|  |__|__|__   |
   __|__|__    __|  |    __|__|__    __|__|__     __|__|__    __|  |  |__|
  |__|  |__|__|__.__|   |__|  |__|__|__|  |__|   |__|  |__|__|__.__|   __
   __    __|__|__.__     __    __|__|__    __     __    __|__|__    __|  |
  |  |__|  |  |     |   |__|__|__|  |__|__|__|   |__|__|  |  |__|__|__.__|
  |__.__.__|  |__.__|    __|__|__    __|__|__     __|__.__|   __|__|__.__
                        |__|  |__|  |__|  |__|   |  |__    __|  |  |     |
                                                 |__.__|  |__.__|  |__.__|
     a(6) = 16                a(7) = 28                 a(8) = 32
		

Crossrefs

Programs

  • Magma
    I:=[0, 0, 0, 4, 6, 12, 16, 28, 32, 44, 52]; [n le 11 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4)-2*Self(n-5)+Self(n-6): n in [1..55]];
    
  • Maple
    gf := 8+4*x+2*x^2+(1/12)*x^4+1/4*(-7*exp(-x)+exp(x)*(2*x^2+6*x-25)-4*sin(x)):
    ser := series(gf, x, 55): seq(factorial(n)*coeff(ser, x, n), n = 0..54);
  • Mathematica
    Join[{0,0,0,4,6},Table[(1/4)*(-25+2n*(2+n)-7*Cos[n*Pi]-4*Sin[n*Pi/2]),{n,5,54}]]
  • PARI
    concat([0, 0, 0], Vec(2*x^3*(-2+x-2*x^2+x^3-2*x^4+3*x^5-2*x^6+x^7)/((-1+x)^3*(1+x+x^2+x^3))+O(x^55)))

Formula

O.g.f.: 2*x^3*(-2 + x - 2*x^2 + x^3 - 2*x^4 + 3*x^5 - 2*x^6 + x^7)/((-1 + x)^3*(1 + x + x^2 + x^3)).
E.g.f.: 8 + 4*x + 2*x^2 + x^4/12 + (1/4)*(-7*exp(-x) + exp(x)*(-25 + 6*x + 2*x^2) - 4*sin(x)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n > 10.
a(n) = (1/4)*(- 25 + 2*n*(2 + n) - 7*cos(n*Pi) - 4*sin(n*Pi/2)) for n > 4, a(0) = 0, a(1) = 0, a(2) = 0, a(3) = 4, a(4) = 6.
Lim_{n->inf} a(n)/A000290(n) = 1/2.

A328685 Row sums of A309038.

Original entry on oeis.org

0, 4, 28, 120, 320, 716, 1380, 2464, 3984, 6196, 9124, 13128, 18048, 24476, 32244, 42096, 53440, 67460, 83604, 103192, 124944, 150892, 179908, 214080, 251184, 294356, 341700, 396264, 454624, 521276, 593364, 675088, 761568, 858916, 963124, 1079736, 1202160, 1338380
Offset: 0

Views

Author

Stefano Spezia, Oct 25 2019

Keywords

Comments

All the terms are even.

Crossrefs

Programs

  • Mathematica
    (* The function T is defined in A309038. *)
    Flatten[Table[Sum[T[n, k], {k, 0, n^2}], {n, 0, 37}]]

Formula

Conjectures from Colin Barker, Oct 25 2019: (Start)
G.f.: 4*x*(1 + 5*x + 17*x^2 + 27*x^3 + 46*x^4 + 52*x^5 + 54*x^6 + 28*x^7 + 29*x^8 - 7*x^9+ 5*x^10 - 17*x^11 + 4*x^12 - 6*x^13 + 12*x^14 - 14*x^15 + 8*x^16 - 4*x^17) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^3).
a(n) = 2*a(n-1) - a(n-2) + 3*a(n-4) - 6*a(n-5) + 3*a(n-6) - 3*a(n-8) + 6*a(n-9) - 3*a(n-10) + a(n-12) - 2*a(n-13) + a(n-14) for n > 18.
(End)
a(n) ~ 5*n^4/8. - Conjectured by Stefano Spezia, Sep 08 2021
Showing 1-2 of 2 results.