A327504 Number of set partitions of [n] where each subset is again partitioned into three nonempty subsets.
1, 0, 0, 1, 6, 25, 100, 511, 3626, 29765, 250200, 2146771, 19575446, 195336505, 2124840900, 24646324431, 299803782466, 3809251939245, 50698296967600, 708349718638891, 10372758309704686, 158546862369781985, 2519789706502636700, 41545703617137280551
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..501
- Wikipedia, Partition of a set
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j) *binomial(n-1, j-1)*Stirling2(j, 3), j=3..n)) end: seq(a(n), n=0..25);
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j -1] StirlingS2[j, 3], {j, 3, n}]]; a /@ Range[0, 25] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
-
PARI
a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2)/(6^k*k!)); \\ Seiichi Manyama, May 07 2022
Formula
E.g.f.: exp((exp(x)-1)^3/3!).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling2(n,3*k)/(6^k * k!). - Seiichi Manyama, May 07 2022