cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327505 Number of set partitions of [n] where each subset is again partitioned into four nonempty subsets.

Original entry on oeis.org

1, 0, 0, 0, 1, 10, 65, 350, 1736, 9030, 60355, 561550, 6183221, 69469400, 761767370, 8239194600, 91058524831, 1073790441370, 13900626022985, 196759304278250, 2963381404815566, 46227649788125190, 736940002561065325, 12005645243802471250, 201482801573414254301
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2019

Keywords

Crossrefs

Column k=4 of A324162.
Cf. A346895.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *binomial(n-1, j-1)*Stirling2(j, 4), j=4..n))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j - 1] StirlingS2[j, 4], {j, 4, n}]];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/(24^k*k!)); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f.: exp((exp(x)-1)^4/4!).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling2(n,4*k)/(24^k * k!). - Seiichi Manyama, May 07 2022