A327506 Number of set partitions of [n] where each subset is again partitioned into five nonempty subsets.
1, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42651, 253660, 1594230, 12463451, 134921787, 1806386946, 25524454410, 354189159871, 4751404201923, 62042283083648, 803415873180606, 10624141898153091, 148849893975447819, 2279247411153872566, 38395707003954897234
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..494
- Wikipedia, Partition of a set
Crossrefs
Column k=5 of A324162.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j) *binomial(n-1, j-1)*Stirling2(j, 5), j=5..n)) end: seq(a(n), n=0..25);
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j - 1] StirlingS2[j, 5], {j, 5, n}]]; a /@ Range[0, 25] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
-
PARI
a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/(120^k*k!)); \\ Seiichi Manyama, May 07 2022
Formula
E.g.f.: exp((exp(x)-1)^5/5!).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling2(n,5*k)/(120^k * k!). - Seiichi Manyama, May 07 2022