A327510 Number of set partitions of [n] where each subset is again partitioned into nine nonempty subsets.
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 45, 1155, 22275, 359502, 5135130, 67128490, 820784250, 9528822303, 106175420065, 1144618783815, 12011663703975, 123297356170054, 1243260840764910, 12377559175117290, 122870882863640450, 1247553197735599755, 13803307806688911225
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- Wikipedia, Partition of a set
Crossrefs
Column k=9 of A324162.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j) *binomial(n-1, j-1)*Stirling2(j, 9), j=9..n)) end: seq(a(n), n=0..27);
-
PARI
a(n) = sum(k=0, n\9, (9*k)!*stirling(n, 9*k, 2)/(9!^k*k!)); \\ Seiichi Manyama, May 07 2022
Formula
E.g.f.: exp((exp(x)-1)^9/9!).
a(n) = Sum_{k=0..floor(n/9)} (9*k)! * Stirling2(n,9*k)/(9!^k * k!). - Seiichi Manyama, May 07 2022