A325932
Indices k of Gram points g(k) for successive negative maximal values of the Riemann zeta function on the critical line.
Original entry on oeis.org
126, 211, 288, 377, 703, 869, 964, 1933, 1935, 2675, 3970, 4265, 4657, 5225, 6618, 8374, 8569, 18014, 25461, 28812, 36719, 50512, 74399, 83452, 90051, 103715, 146919, 164189, 185011, 206716
Offset: 1
n | a(n) | Zeta[1/2+I*g(a(n))] | g(a(n))
-=---+--------+----------------------+------------
1 | 126 | -0.02762949885719994 | 282.4547208
2 | 211 | -0.38288957164454790 | 415.6014600
3 | 288 | -0.66545881605404208 | 527.6973416
4 | 377 | -0.83760106086093435 | 650.8910448
5 | 703 | -1.00455040613260376 | 1068.189532
6 | 869 | -1.27120822682165464 | 1267.847910
7 | 964 | -1.392200186869156 | 1379.419269
8 | 1933 | -1.413878403700959 | 2446.574386
9 | 1935 | -1.881639907182627 | 2448.681071
10 | 2675 | -2.062586314581326 | 3210.042865
11 | 3970 | -2.1482691132271 | 4479.035743
12 | 4265 | -2.1659698746279 | 4759.875045
13 | 4657 | -2.2554659693900 | 5129.256083
14 | 5225 | -2.4955901590107 | 5657.609720
15 | 6618 | -2.60670539564937 | 6924.738490
16 | 8374 | -2.95430731615046 | 8476.646123
-
ff = 0; aa = {}; Do[kk = Re[Zeta[1/2 + I N[InverseFunction[RiemannSiegelTheta][n Pi], 10]]];
If[kk < ff, AppendTo[aa, n]; ff = kk], {n, 1, 450000}]; aa
A327546
Indices n of j-points j(n) for successive positive maxima of the Riemann zeta function on critical line.
Original entry on oeis.org
1, 3, 6, 12, 23, 31, 39, 62, 124, 181, 211, 254, 377, 703, 869, 1207, 1443, 1702, 1933, 2565, 3968, 4657, 4803, 5815, 6618, 8569, 13879, 15321, 25461, 44681, 58716, 62728, 68865, 74399, 83452, 100050, 167369, 181802, 185011, 220569, 259499
Offset: 1
n | a(n) | Zeta[1/2+I*j(a(n))] | j(a(n))
-----+--------+----------------------+------------
1 | 1 | 0.6888099353665862*i | 25.49150821
2 | 3 | 1.0716782759460156*i | 33.62379307
3 | 6 | 1.3843203337013829*i | 43.99352729
4 | 12 | 2.0558319047400831*i | 61.73354345
5 | 23 | 2.2103659566253039*i | 89.57355850
6 | 31 | 2.4259114706957412*i | 107.8332676
7 | 39 | 2.5797839609135738*i | 125.0556067
8 | 62 | 3.5676523298409918*i | 170.8597635
9 | 124 | 3.9817183542258544*i | 279.9753243
10 | 181 | 4.4992991376133266*i | 370.7853980
11 | 211 | 4.7024313606767908*i | 416.3507516
12 | 254 | 4.9763959256849833*i | 479.6816189
13 | 377 | 6.0255895622763492*i | 651.5679685
14 | 703 | 6.6869029304615494*i | 1068.801198
15 | 869 | 6.9619624520146889*i | 1268.439833
16 | 1207 | 7.0560068592571360*i | 1658.281364
-
ff = 0; aa = {}; Do[kk = Im[Zeta[1/2 + I N[InverseFunction[RiemannSiegelTheta][(2 n + 1) Pi/2],10]]]; If[kk > ff, AppendTo[aa, n]; ff = kk], {n, 1, 100051}]; aa
A329751
Indices n of j-points j(n) for successive positive minima of the Riemann zeta function on critical line.
Original entry on oeis.org
1, 9, 14, 27, 38, 288, 28171, 42680
Offset: 1
n | a(n) | j(a(n)) | zeta(1/2+i*j(a(n)))
---+--------+----------------+----------------------
1 | 1 | 25.49150821 | 0.68880994 * i
2 | 9 | 53.21405637 | 0.59984107 * i
3 | 14 | 67.13274840 | 0.09483571 * i
4 | 27 | 98.85689819 | 0.09031281 * i
5 | 38 | 122.94885747 | 0.00316160 * i
6 | 288 | 528.40629391 | 0.00013121 * i
7 | 28171 | 24370.31450783 | 0.00004727 * i
8 | 42680 | 35149.21796047 | 0.00000366 * i
-
prec=20;ff = 10; aa = {}; Do[kk = Im[Zeta[1/2 + I N[InverseFunction[RiemannSiegelTheta][(2 n + 1) Pi/2], prec]]]; If[(kk < ff) && (kk > 0), AppendTo[aa, n]; ff = kk], {n, 1, 50000}]; aa
A331100
a(n) is the index of the first occurrence of exactly n zeta zeros in the interval between g(n) and g(n+1) Gram points.
Original entry on oeis.org
-1, 126, 2145, 368714779, 3680295786520
Offset: 1
The first nontrivial Riemann zero is situated between g(-1) and g(0) so a(1)=-1.
Showing 1-4 of 4 results.
Comments