cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A324019 Triangle T(n,k) read by rows giving the number of k-digit zeroless polydivisible numbers in base n with 1 <= k <= n-1.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 8, 10, 10, 5, 10, 10, 10, 10, 6, 18, 36, 52, 62, 62, 7, 21, 49, 49, 68, 68, 68, 8, 32, 64, 128, 205, 205, 233, 233, 9, 36, 108, 216, 216, 324, 416, 416, 416, 10, 50, 166, 416, 832, 1382, 1967, 2465, 2726, 2726, 11, 55, 165, 330, 726, 726, 1140, 1140, 1140, 1140, 1140
Offset: 2

Views

Author

Seiichi Manyama, Sep 01 2019

Keywords

Comments

For k >= n there is no k-digit zeroless polydivisible number in base n.

Examples

			Triangle begins:
n\k  | 1   2    3    4    5    6    7    8    9
-----+------------------------------------------
   2 | 1;
   3 | 2,  2;
   4 | 3,  3,   3;
   5 | 4,  8,  10,  10;
   6 | 5, 10,  10,  10,  10;
   7 | 6, 18,  36,  52,  62,  62;
   8 | 7, 21,  49,  49,  68,  68,  68;
   9 | 8, 32,  64, 128, 205, 205, 233, 233;
  10 | 9, 36, 108, 216, 216, 324, 416, 416, 416;
		

Crossrefs

Row sums give A324020.

A327577 Numbers of zeroless polydivisible numbers with all digits the same in base n.

Original entry on oeis.org

1, 4, 5, 10, 7, 26, 11, 20, 19, 32, 17, 52, 22, 36, 38, 44, 28, 78, 32, 64, 49, 60, 38, 104, 47, 70, 61, 78, 49, 196, 53, 88, 75, 94, 66, 162, 64, 104, 88, 134, 70, 216, 74, 120, 123, 128, 80, 214, 85, 168, 117, 144, 91, 240, 103, 162, 131, 160, 101, 392, 108, 172, 152, 178, 122, 296
Offset: 2

Views

Author

Seiichi Manyama, Sep 17 2019

Keywords

Examples

			n | zeroless polydivisible numbers with all digits the same in base n
--+------------------------------------------------------------------
2 | [1]
3 | [1, 11], [2, 22]
4 | [1], [2, 22, 222], [3]
So a(2) = 1, a(3) = 4, a(4) = 5.
		

Crossrefs

Formula

a(n) = A327545(n,1).
a(n) = Sum_{k=1..n-1} A327571(n,k).

A327571 Triangle T(n,k) read by rows giving the number of zeroless polydivisible numbers in base n that contains only "k" in the digits with 1 <= k <= n-1.

Original entry on oeis.org

1, 2, 2, 1, 3, 1, 2, 2, 4, 2, 1, 2, 1, 2, 1, 4, 4, 4, 4, 6, 4, 1, 2, 1, 2, 1, 3, 1, 2, 2, 4, 2, 2, 4, 2, 2, 1, 3, 1, 4, 1, 3, 1, 4, 1, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4
Offset: 2

Views

Author

Seiichi Manyama, Sep 17 2019

Keywords

Examples

			n | zeroless polydivisible numbers with all digits the same in base n
--+------------------------------------------------------------------
2 | [1]
3 | [1, 11], [2, 22]
4 | [1], [2, 22, 222], [3]
So T(2,1) = 1, T(3,1) = 2, T(3,2) = 2, T(4,1) = 1, T(4,2) = 3, T(4,3) = 1.
Triangle begins:
n\k  | 1  2  3  4  5  6  7  8  9 10 11 12
-----+------------------------------------
   2 | 1;
   3 | 2, 2;
   4 | 1, 3, 1;
   5 | 2, 2, 4, 2;
   6 | 1, 2, 1, 2, 1;
   7 | 4, 4, 4, 4, 6, 4;
   8 | 1, 2, 1, 2, 1, 3, 1;
   9 | 2, 2, 4, 2, 2, 4, 2, 2;
  10 | 1, 3, 1, 4, 1, 3, 1, 4, 1;
  11 | 2, 2, 6, 2, 2, 6, 2, 2, 6, 2;
  12 | 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1;
  13 | 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4;
		

Crossrefs

Row sums give A327577.

Programs

  • Ruby
    def T(k, n)
      s = 0
      (0..n - 2).each{|i|
        s += k * n ** i
        return i if s % (i + 1) > 0
      }
      n - 1
    end
    def A327571(n)
      (2..n).map{|i| (1..i - 1).map{|j| T(j, i)}}.flatten
    end
    p A327571(10)

Formula

T(n,1) = T(n,n-1) = A071222(n-2).
T(n,1) <= T(n,k).
T(n,2*m) >= 2 for m >= 1.
Showing 1-3 of 3 results.