A324020
Total number of zeroless polydivisible numbers in base n.
Original entry on oeis.org
1, 4, 9, 32, 45, 236, 330, 1108, 2157, 12740, 7713, 93710, 65602, 230342, 570128, 5007682, 2484863, 36896861, 16618196, 81481351, 266303823, 1991227852, 533069755, 7599786619, 13636829615, 35633175288, 43994413188, 796513902354, 121485971111, 5858898939564
Offset: 2
n | polydivisible numbers in base n | zeroless
--+----------------------------------+---------------
2 | [0, 1] | [1]
| [10] |
--+----------------------------------+---------------
3 | [0, 1, 2] | [1, 2]
| [11, 20, 22] | [11, 22]
| [110, 200, 220] |
| [1100, 2002, 2200] |
| [11002, 20022] |
| [110020, 200220] |
--+----------------------------------+----------------
4 | [0, 1, 2, 3] | [1, 2, 3]
| [10, 12, 20, 22, 30, 32] | [12, 22, 32]
| [102, 120, 123, 201, | [123, 222, 321]
| 222, 300, 303, 321] |
| [1020, 1200, 1230, 2010, |
| 2220, 3000, 3030, 3210] |
| [10202, 12001, 12303, 20102, |
| 22203, 30002, 32103] |
| [120012, 123030, 222030, 321030] |
| [2220301] |
A327545
Triangle T(n,k) read by rows giving the number of zeroless polydivisible numbers in base n that have k distinct digits with 1 <= k <= n-1.
Original entry on oeis.org
1, 4, 0, 5, 2, 2, 10, 14, 8, 0, 7, 14, 20, 2, 2, 26, 39, 84, 60, 27, 0, 11, 47, 108, 95, 63, 3, 3, 20, 101, 233, 369, 289, 79, 17, 0, 19, 86, 306, 475, 714, 409, 146, 1, 1, 32, 201, 979, 2048, 3581, 3474, 1925, 449, 51, 0, 17, 114, 507, 1273, 2224, 2239, 1074, 230, 35, 0, 0
Offset: 2
n | zeroless polydivisible numbers in base n
--+------------------------------------------
2 | [1]
3 | [1, 2, 11, 22]
4 | [1, 2, 3, 22, 222], [12, 32], [123, 321]
So T(2,1) = 1, T(3,1) = 4, T(3,2) = 0, T(4,1) = 5, T(4,2) = 2, T(4,3) = 2.
Triangle begins:
n\k | 1 2 3 4 5 6 7 8 9
-----+----------------------------------------
2 | 1;
3 | 4, 0;
4 | 5, 2, 2;
5 | 10, 14, 8, 0;
6 | 7, 14, 20, 2, 2;
7 | 26, 39, 84, 60, 27, 0;
8 | 11, 47, 108, 95, 63, 3, 3;
9 | 20, 101, 233, 369, 289, 79, 17, 0;
10 | 19, 86, 306, 475, 714, 409, 146, 1, 1;
-
def A(n)
d = 0
a = (1..n - 1).map{|i| [i]}
ary = [n - 1] + Array.new(n - 2, 0)
while d < n - 2
d += 1
b = []
a.each{|i|
(1..n - 1).each{|j|
m = i.clone + [j]
if (0..d).inject(0){|s, k| s + m[k] * n ** (d - k)} % (d + 1) == 0
b << m
ary[m.uniq.size - 1] += 1
end
}
}
a = b
end
ary
end
def A327545(n)
(2..n).map{|i| A(i)}.flatten
end
p A327545(10)
A324205
The largest zeroless polydivisible number in base n (written in base 10).
Original entry on oeis.org
1, 8, 57, 616, 7465, 117636, 2054451, 42912896, 987654564, 25915636800, 736867916290, 23297940244152, 789024560946557, 29174313555611252, 1147797409031506920, 48649494479090875520, 2178349008754768757872, 104127216885225393371514
Offset: 2
a(3) = (22)_3 = 8.
a(4) = (321)_4 = 57.
a(5) = (4431)_5 = 616.
a(6) = (54321)_6 = 7465.
a(7) = (666651)_7 = 117636.
a(8) = (7654463)_8 = 2054451.
a(9) = (88665375)_9 = 42912896.
a(10) = 987654564.
a(11) = (AA99779559)_11 = 25915636800.
a(12) = (BA9876A836A)_12 = 736867916290.
A324022
Zeroless "magic" numbers.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 16, 18, 22, 24, 26, 28, 32, 34, 36, 38, 42, 44, 46, 48, 52, 54, 56, 58, 62, 64, 66, 68, 72, 74, 76, 78, 82, 84, 86, 88, 92, 94, 96, 98, 123, 126, 129, 141, 144, 147, 162, 165, 168, 183, 186, 189, 222, 225, 228, 243, 246, 249, 261, 264, 267, 282, 285
Offset: 1
98 = 2 * 49,
987 = 3 * 329,
9876 = 4 * 2469,
98765 = 5 * 19753,
987654 = 6 * 164609,
9876545 = 7 * 1410935,
98765456 = 8 * 12345682,
987654564 = 9 * 109739396.
So 987654564 is a term.
Showing 1-4 of 4 results.
Comments