cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327550 Number of compositions of partitions of 2n with exactly n compositions.

Original entry on oeis.org

1, 2, 8, 24, 80, 224, 704, 1920, 5632, 15360, 43008, 114688, 315392, 827392, 2211840, 5767168, 15138816, 38928384, 100925440, 256901120, 657457152, 1660944384, 4202692608, 10527703040, 26424115200, 65699577856, 163477192704, 403995361280, 998043025408
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or
          k<1, 0, b(n, i-1, k)+ 2^(i-1)*b(n-i, min(n-i, i), k-1)))
        end:
    a:= n-> b(2*n$2, n)-`if`(n=0, 0, b(2*n$2, n-1)):
    seq(a(n), n=0..40);
  • Mathematica
    Table[2^n * PartitionsP[n], {n, 0, 30}] (* Vaclav Kotesovec, Oct 02 2020 *)

Formula

a(n) = A327549(2n,n).
a(n) ~ 2^n * exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). - Vaclav Kotesovec, Sep 19 2019
a(n) = A000041(n) * A000079(n). - Alois P. Heinz, Oct 08 2020
G.f.: Product_{k>=1} 1 / (1 - 2^k*x^k). - Ilya Gutkovskiy, Apr 24 2021