cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A370709 a(n) = 2^n * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/2).

Original entry on oeis.org

1, 2, 2, 20, 6, 108, 148, 776, -186, 5964, -4, 51032, -89700, 512120, -1259416, 6406032, -19733434, 78363148, -268823572, 1047941688, -3800035916, 14327505832, -52766730600, 199492430192, -746479735524, 2811936761016, -10588174502568, 40092283176560, -151796846803592
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 2*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 2^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 2*(2*x)^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Sqrt[QPochhammer[-2, x]/3], {x, 0, nmax}], x] * 2^Range[0, nmax]

Formula

G.f.: Product_{k>=1} (1 + 2*(2*x)^k)^(1/2).
a(n) ~ (-1)^(n+1) * c * 4^n / n^(3/2), where c = QPochhammer(-1/2)^(1/2) / (2*sqrt(Pi)) = 0.31039710860287467176143051675437...

A370716 a(n) = 3^(2*n) * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/3).

Original entry on oeis.org

1, 6, 18, 1170, -1890, 133326, 101250, 20498994, -164656314, 3778220862, -28085954094, 771567716970, -10691904063114, 183594050113518, -2711145260068326, 49416883617381354, -789899109743435994, 13176840267952166070, -216403389726994588086, 3681309971143060236810
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + 2*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^(2*Range[0, nmax])
    nmax = 20; CoefficientList[Series[Product[(1 + 2*(9*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
    nmax = 20; CoefficientList[Series[(QPochhammer[-2, x]/3)^(1/3), {x, 0, nmax}], x] * 3^(2*Range[0, nmax])

Formula

G.f.: Product_{k>=1} (1 + 2*(9*x)^k)^(1/3).
a(n) ~ (-1)^(n+1) * c * 18^n / n^(4/3), where c = QPochhammer(-1/2)^(1/3) / (3*Gamma(2/3)) = 0.2623638446186535909018671540030519...

A259400 a(n) = Sum_{k=0..n} 2^k*p(k), where p(k) is the partition function A000041.

Original entry on oeis.org

1, 3, 11, 35, 115, 339, 1043, 2963, 8595, 23955, 66963, 181651, 497043, 1324435, 3536275, 9303443, 24442259, 63370643, 164296083, 421197203, 1078654355, 2739598739, 6942291347, 17469994387, 43894109587, 109593687443, 273070880147, 677066241427, 1675109266835
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 26 2015

Keywords

Comments

In general, Sum_{k=0..n} (m^k * p(k)) ~ m/(m-1) * m^n * p(n), for m > 1.

Crossrefs

Partial sums of A327550.

Programs

  • Mathematica
    Table[Sum[2^k*PartitionsP[k],{k,0,n}],{n,0,40}]

Formula

a(n) ~ 2^(n-1) * exp(Pi*sqrt(2*n/3)) / (n*sqrt(3)).

A327549 Number T(n,k) of compositions of partitions of n with exactly k compositions; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 8, 8, 2, 1, 0, 16, 16, 8, 2, 1, 0, 32, 48, 24, 8, 2, 1, 0, 64, 96, 64, 24, 8, 2, 1, 0, 128, 256, 160, 80, 24, 8, 2, 1, 0, 256, 512, 448, 192, 80, 24, 8, 2, 1, 0, 512, 1280, 1024, 576, 224, 80, 24, 8, 2, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2019

Keywords

Examples

			T(3,1) = 4: 3, 21, 12, 111.
T(3,2) = 2: 2|1, 11|1.
T(3,3) = 1: 1|1|1.
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,    1;
  0,   4,    2,    1;
  0,   8,    8,    2,   1;
  0,  16,   16,    8,   2,   1;
  0,  32,   48,   24,   8,   2,  1;
  0,  64,   96,   64,  24,   8,  2,  1;
  0, 128,  256,  160,  80,  24,  8,  2, 1;
  0, 256,  512,  448, 192,  80, 24,  8, 2, 1;
  0, 512, 1280, 1024, 576, 224, 80, 24, 8, 2, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A011782 (for n>0), A134353(n-2) (for n>1).
Row sums give A075900.
T(2n,n) gives A327550.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+expand(2^(i-1)*x*b(n-i, min(n-i, i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + 2^(i-1) x b[n-i, Min[n-i, i]]]];
    T[n_] := CoefficientList[b[n, n], x];
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A327548(n).

A352402 Expansion of Product_{k>=1} 1 / (1 + 2^(k-1)*x^k).

Original entry on oeis.org

1, -1, -1, -3, -1, -7, -1, -15, 31, -63, 159, -95, 671, -287, 3231, -2975, 15519, -7839, 44191, -34975, 224415, -291999, 863391, -990367, 2927775, -4902047, 12561567, -27225247, 56470687, -102640799, 152153247, -422620319, 877243551, -2278272159, 3357125791
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 34; CoefficientList[Series[Product[1/(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^k Length[IntegerPartitions[n, {k}]] 2^(n - k), {k, 0, n}], {n, 0, 34}]

Formula

a(n) = Sum_{k=0..n} (-1)^k * p(n,k) * 2^(n-k), where p(n,k) is the number of partitions of n into k parts.
Showing 1-5 of 5 results.