cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327564 If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)^(k_j - 1)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 9, 4, 1, 1, 3, 1, 1, 1, 27, 1, 4, 1, 3, 1, 1, 1, 9, 6, 1, 16, 3, 1, 1, 1, 81, 1, 1, 1, 12, 1, 1, 1, 9, 1, 1, 1, 3, 4, 1, 1, 27, 8, 6, 1, 3, 1, 16, 1, 9, 1, 1, 1, 3, 1, 1, 4, 243, 1, 1, 1, 3, 1, 1, 1, 36, 1, 1, 6, 3, 1, 1, 1, 27, 64, 1, 1, 3, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 03 2020

Keywords

Examples

			a(12) = a(2^2 * 3) = (2 + 1)^(2 - 1) * (3 + 1)^(1 - 1) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((#[[1]] + 1)^(#[[2]] - 1) & /@ FactorInteger[n]); Table[a[n], {n, 1, 85}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1]++; f[k,2]--); factorback(f); \\ Michel Marcus, Mar 03 2020

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA001221(n/d) * A003557(n/d) * a(d).
a(n) = A003959(n) / A048250(n) = A003968(n) / A007947(n).
a(n) = A348038(n) * A348039(n) = A340368(n) / A173557(n). - Antti Karttunen, Oct 29 2021
Dirichlet g.f.: 1/(zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) - 1/p^s)). - Amiram Eldar, Dec 07 2023