cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327643 Number of refinement sequences n -> ... -> {1}^n, where in each step one part is replaced by a partition of itself into two smaller parts (in weakly decreasing order).

Original entry on oeis.org

1, 1, 1, 3, 6, 24, 84, 498, 2220, 15108, 92328, 773580, 5636460, 53563476, 471562512, 5270698716, 52117937052, 637276396764, 7317811499736, 100453675122444, 1276319138168796, 19048874583061716, 270233458572751440, 4442429353548965628, 68384217440167826412
Offset: 1

Views

Author

Alois P. Heinz, Sep 20 2019

Keywords

Comments

Number of proper (n-1)-times partitions of n, cf. A327639.
Might be called "Half-Factorial numbers" analog to the "Half-Catalan numbers" (A000992).
The recursion formula is a special case of the formula given in A327729.
a(n+1)/(n*a(n)) tends to 0.67617164... - Vaclav Kotesovec, Apr 28 2020

Examples

			a(1) = 1:
  1
a(2) = 1:
  2 -> 11
a(3) = 1:
  3 -> 21 -> 111
a(4) = 3:
  4 -> 31 -> 211 -> 1111
  4 -> 22 -> 112 -> 1111
  4 -> 22 -> 211 -> 1111
a(5) = 6:
  5 -> 41 -> 311 -> 2111 -> 11111
  5 -> 41 -> 221 -> 1121 -> 11111
  5 -> 41 -> 221 -> 2111 -> 11111
  5 -> 32 -> 212 -> 1112 -> 11111
  5 -> 32 -> 212 -> 2111 -> 11111
  5 -> 32 -> 311 -> 2111 -> 11111
		

Crossrefs

Cf. A000142, A000992, A002846 (only one part of each size is replaceable), A327631, A327639, A327697, A327698, A327699, A327702, A327729.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
          b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    a:= n-> add(b(n$2, i)*(-1)^(n-1-i)*binomial(n-1, i), i=0..n-1):
    seq(a(n), n=1..29);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=1, 1,
          add(a(j)*a(n-j)*binomial(n-2, j-1), j=1..n/2))
        end:
    seq(a(n), n=1..29);
  • Mathematica
    a[n_] := a[n] = Sum[Binomial[n-2, j-1] a[j] a[n-j], {j, n/2}]; a[1] = 1;
    Array[a, 25] (* Jean-François Alcover, Apr 28 2020 *)

Formula

a(n) = Sum_{j=1..floor(n/2)} C(n-2,j-1) a(j)*a(n-j) for n > 1, a(1) = 1.
a(n) = A327639(n,n-1) = A327631(n,n-1)/n.