A327643 Number of refinement sequences n -> ... -> {1}^n, where in each step one part is replaced by a partition of itself into two smaller parts (in weakly decreasing order).
1, 1, 1, 3, 6, 24, 84, 498, 2220, 15108, 92328, 773580, 5636460, 53563476, 471562512, 5270698716, 52117937052, 637276396764, 7317811499736, 100453675122444, 1276319138168796, 19048874583061716, 270233458572751440, 4442429353548965628, 68384217440167826412
Offset: 1
Keywords
Examples
a(1) = 1: 1 a(2) = 1: 2 -> 11 a(3) = 1: 3 -> 21 -> 111 a(4) = 3: 4 -> 31 -> 211 -> 1111 4 -> 22 -> 112 -> 1111 4 -> 22 -> 211 -> 1111 a(5) = 6: 5 -> 41 -> 311 -> 2111 -> 11111 5 -> 41 -> 221 -> 1121 -> 11111 5 -> 41 -> 221 -> 2111 -> 11111 5 -> 32 -> 212 -> 1112 -> 11111 5 -> 32 -> 212 -> 2111 -> 11111 5 -> 32 -> 311 -> 2111 -> 11111
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..481
- Vaclav Kotesovec, Plot of a(n+1)/(n*a(n)) for n = 1..10000
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1, b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k)) end: a:= n-> add(b(n$2, i)*(-1)^(n-1-i)*binomial(n-1, i), i=0..n-1): seq(a(n), n=1..29); # second Maple program: a:= proc(n) option remember; `if`(n=1, 1, add(a(j)*a(n-j)*binomial(n-2, j-1), j=1..n/2)) end: seq(a(n), n=1..29);
-
Mathematica
a[n_] := a[n] = Sum[Binomial[n-2, j-1] a[j] a[n-j], {j, n/2}]; a[1] = 1; Array[a, 25] (* Jean-François Alcover, Apr 28 2020 *)
Comments