A327691 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A003106.
1, 0, 1, 1, 2, 1, 5, 3, 8, 7, 13, 11, 26, 20, 40, 39, 66, 61, 111, 102, 171, 174, 266, 269, 427, 423, 638, 675, 969, 1016, 1477, 1544, 2177, 2350, 3209, 3466, 4754, 5112, 6867, 7546, 9931, 10899, 14343, 15729, 20406, 22653, 28962, 32168, 41069, 45561, 57551, 64382, 80491, 90030, 112286
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Seiichi Manyama)
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[1/(QPochhammer[x^(5*j - 3)] * QPochhammer[x^(5*j - 2)]), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2019 *)
Formula
G.f.: Product_{i>=1} Product_{j>=1} 1 / ((1-x^(i*(5*j-2))) * (1-x^(i*(5*j-3)))).