cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327713 Exceptional class of numbers k such that p(25*k + 24) == 0 (mod 125), where p() = A000041().

Original entry on oeis.org

6, 26, 60, 65, 70, 81, 96, 126, 135, 141, 175, 176, 196, 205, 206, 226, 305, 310, 330, 340, 346, 371, 380, 435, 436, 440, 460, 480, 481, 516, 595, 611, 646, 650, 665, 666, 685, 696, 700, 710, 716, 725, 730, 736, 745, 751, 760, 765, 775, 780, 811, 826, 841, 860, 871
Offset: 1

Views

Author

Petros Hadjicostas, Sep 23 2019

Keywords

Comments

The unexceptional class consists of the numbers k == (2, 3, or 4) (mod 5). Watson (1938, p. 111) proved that such numbers k satisfy p(25*k + 24) == 0 (mod 125).
(p(25*a(m) + 24)/125: m >= 1) = (3177000598, 140513239982045202108972, 23104937422373952975695974907848646058, ...).

Examples

			p(25*6 + 24) = p(174) = 397125074750 = 3177000598 * 125 (the only example in Watson (1938)).
		

Crossrefs

Programs

  • PARI
    is(n) = n % 5 < 2 && numbpart(25*n+24)%125==0 \\ David A. Corneth, Sep 23 2019

Extensions

More terms from David A. Corneth, Sep 23 2019