cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327738 Expansion of 1 / (1 - Sum_{i>=1, j>=1} x^(i*j^2)).

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 37, 76, 158, 326, 672, 1386, 2862, 5906, 12187, 25148, 51900, 107103, 221023, 456110, 941256, 1942423, 4008481, 8272094, 17070712, 35227975, 72698206, 150023632, 309596255, 638898274, 1318462339, 2720844607, 5614870612, 11587126980
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Invert transform of A046951.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*
          nops(select(issqr, numtheory[divisors](i))), i=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 23 2019
  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Length[Select[Divisors[k], IntegerQ[Sqrt[#]] &]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]

Formula

G.f.: 1 / (1 - Sum_{k>=1} x^(k^2) / (1 - x^(k^2))).
G.f.: 1 / (1 - Sum_{k>=1} (theta_3(x^k) - 1) / 2), where theta_() is the Jacobi theta function.
a(0) = 1; a(n) = Sum_{k=1..n} A046951(k) * a(n-k).