A327770 a(n) = (23 * 7^(2*n) + 1)/24. Sequence related to the properties of the partition function A000041 modulo a power of 7.
1, 47, 2301, 112747, 5524601, 270705447, 13264566901, 649963778147, 31848225129201, 1560563031330847, 76467588535211501, 3746911838225363547, 183598680073042813801, 8996335323579097876247, 440820430855375795936101, 21600201111913414000868947
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..500
- G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128; see pp. 118 and 124.
- Eric Weisstein's World of Mathematics, Partition Function P Congruences.
- Wikipedia, G. N. Watson.
- Index entries for linear recurrences with constant coefficients, signature (50,-49).
Programs
-
Mathematica
CoefficientList[Series[(1 - 3 x)/((1 - x) (1 - 49 x)), {x, 0, 15}], x] (* Michael De Vlieger, Sep 27 2019 *) LinearRecurrence[{50,-49},{1,47},20] (* Harvey P. Dale, Mar 09 2023 *)
-
PARI
a(n) = (23 * 7^(2*n) + 1)/24; \\ Michel Marcus, Sep 25 2019
-
PARI
Vec((1 - 3*x) / ((1 - x)*(1 - 49*x)) + O(x^20)) \\ Colin Barker, Sep 25 2019
Formula
From Colin Barker, Sep 25 2019: (Start)
G.f.: (1 - 3*x) / ((1 - x)*(1 - 49*x)).
a(n) = 50*a(n-1) - 49*a(n-2) for n>1.
(End)
Comments