A327803 Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a set of size k; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
1, 0, 1, 0, 3, 0, 7, 3, 0, 31, 16, 0, 121, 125, 0, 831, 711, 60, 0, 5041, 5915, 525, 0, 42911, 46264, 6328, 0, 364561, 438681, 67788, 0, 3742453, 4371085, 753420, 12600, 0, 39916801, 49321745, 8924685, 166320, 0, 486891175, 588219523, 113501784, 2966040
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 3; 0, 7, 3; 0, 31, 16; 0, 121, 125; 0, 831, 711, 60; 0, 5041, 5915, 525; 0, 42911, 46264, 6328; 0, 364561, 438681, 67788; 0, 3742453, 4371085, 753420, 12600; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Wikipedia, Multinomial coefficients
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
with(combinat): T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0), l= select(x-> nops({x[]})=k, partition(n))): seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..14); # second Maple program: b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(x^signum(j)*b(n-i*j, i-1)* combinat[multinomial](n, n-i*j, i$j), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..14);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[x^Sign[j]*b[n - i*j, i-1]*multinomial[n, Join[{n-i*j}, Table[i, {j}]]], {j, 0, n/i}]]]]; T[n_] := CoefficientList[b[n, n], x]; T /@ Range[0, 14] // Flatten (* Jean-François Alcover, May 06 2020, after 2nd Maple program *)