A327831 Numbers m such that sigma(m)*tau(m) is a square but sigma(m)/tau(m) is not an integer.
232, 2152, 3240, 3560, 3944, 6516, 17908, 22504, 23716, 26172, 32360, 34344, 36584, 37736, 43300, 45612, 48204, 55080, 55912, 60520, 61480, 69352, 73084, 78184, 79056, 79300, 96552, 104168, 105832, 106088, 125356, 130432, 133864, 140040, 149992, 163764, 168424, 172840, 176360, 183204
Offset: 1
Keywords
Examples
sigma(232) = 450 and tau(232) = 8, so sigma(232)*tau(232) = 450*8 = 3600 = 60^2 and sigma(232)/tau(232) = 450/8 = 225/4 is not an integer, hence 232 is a term.
Crossrefs
Programs
-
Magma
[k:k in [1..200000] | not IsIntegral(a/b) and IsSquare(a*b) where a is DivisorSigma(1,k) where b is #Divisors(k)]; // Marius A. Burtea, Oct 15 2019
-
Maple
filter:= u -> sigma(u)/tau(u) <> floor(sigma(u)/tau(u)) and issqr(sigma(u)*tau(u)) : select(filter, [$1..100000]);
-
Mathematica
sQ[n_] := IntegerQ@Sqrt[n]; aQ[n_] := sQ[(d = DivisorSigma[0, n]) * (s = DivisorSigma[1, n])] && !sQ[s/d]; Select[Range[2*10^5], aQ] (* Amiram Eldar, Oct 15 2019 *)
-
PARI
isok(m) = my(s=sigma(m), t=numdiv(m)); issquare(s*t) && (s % t); \\ Michel Marcus, Oct 15 2019
Comments