cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A327830 Numbers m such that the geometric mean of tau(m) and sigma(m) is an integer.

Original entry on oeis.org

1, 7, 17, 22, 30, 31, 71, 94, 97, 115, 119, 127, 138, 154, 164, 165, 199, 210, 214, 217, 232, 241, 260, 265, 318, 337, 343, 374, 382, 449, 497, 510, 513, 517, 527, 577, 647, 658, 668, 679, 682, 705, 745, 759, 805, 862, 881, 889, 894, 930, 966, 967, 996, 1102, 1125
Offset: 1

Views

Author

Bernard Schott, Sep 27 2019

Keywords

Comments

The first 20 terms of this sequence are also the first 20 terms of A144695: m such that sigma(m)/tau(m) is a square. Indeed, if sigma(m)/tau(m) is a square then sigma(m)*tau(m) is also a square, but the converse is false. These counterexamples are in A327831; the first one is a(21) = 232.
The primes p of the form 2*k^2 - 1: 7, 17, 31, 71, ... (A066436) form a subsequence because sigma(p) * tau(p) = (2*k)^2.
Another subsequence consists of the terms m such that sigma(m) and tau(m) are both squares; this occurs when m is the product of two distinct primes p*q, p < q where sigma(m) = (p+1)*(q+1) is a square and tau(m) = 4. The first few terms are 22, 94, 115, 119, 214, ... They are in A256152.

Examples

			sigma(30) = 72 and tau(30) = 8, sigma(30)*tau(30) = 576 = 24^2, hence 30 is a term.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A064840 (tau*sigma).
Cf. A011257 (similar, with phi(m) and sigma(m)), A144695 (sigma(m)/tau(m) is a square), A327831 (sigma(m) * tau(m) is a square but sigma(m)/tau(m) is not an integer).
Subsequences: A066436, A256152.

Programs

  • Magma
    [k:k in [1..1150]| IsSquare(#Divisors(k)*DivisorSigma(1,k))]; // Marius A. Burtea, Sep 27 2019
    
  • Maple
    filter:= s -> issqr(sigma(s)*tau(s)) : select(filter, [$1..2500]);
  • Mathematica
    Select[Range[1000], IntegerQ @ Sqrt[DivisorSigma[0, #] * DivisorSigma[1, #]] &] (* Amiram Eldar, Sep 27 2019 *)
  • PARI
    isok(m) = issquare(numdiv(m)*sigma(m)); \\ Michel Marcus, Sep 27 2019

A341940 Numbers m such that phi(m)*tau(m) is a square but phi(m)/tau(m) is not the square of an integer.

Original entry on oeis.org

54, 1026, 1280, 2187, 2304, 3840, 4352, 6750, 8802, 9072, 9900, 12500, 13056, 13718, 17496, 18700, 21870, 25856, 36900, 37500, 41154, 41553, 47682, 50432, 56100, 57078, 65792, 69700, 77568, 78786, 79200, 84240, 100000, 102656, 103586, 111100, 117666, 125712
Offset: 1

Views

Author

Bernard Schott, Feb 24 2021

Keywords

Comments

If phi(m)/tau(m) is a square of an integer (m is in A341939) then phi(m)*tau(m) is also a square (m is in A341938), but the converse is false. This sequence consists of these counterexamples (see the Examples section).

Examples

			phi(54) = 18, tau(54) = 8, phi(54)*tau(54) = 18*8 = 144 = 12^2 but phi(54)/tau(54) = 9/4 = (3/2)^2 is not the square of an integer, hence 54 is a term.
phi(1026) = 324, tau(1026) = 16, phi(1026)*tau(1026) = 324*16 = 5184 = 72^2 but phi(1026)/tau(1026) = 324/16 = 81/4 = (9/2)^2 is not the square of an integer, hence 1026 is another term.
		

Crossrefs

Similar for: A327624 (phi(n) and sigma(n)), A327831 (sigma(n) and tau(n)).
Equals A341938 \ A341939.
Cf. A000005 (phi), A000010 (tau).

Programs

  • Maple
    with(numtheory): filter:= r -> phi(r)/tau(r) <> floor(phi(r)/tau(r)) and issqr(phi(r)*tau(r)) : select(filter, [$1..50000]);
  • Mathematica
    Select[Range[10^5], IntegerQ /@ Sqrt[{(e = EulerPhi[#])*(d = DivisorSigma[0, #]), e/d}] == {True, False} &] (* Amiram Eldar, Feb 24 2021 *)
  • PARI
    isok(m) = my(x=eulerphi(m), y = numdiv(m)); issquare(x*y) && (denominator(x/y) != 1); \\ Michel Marcus, Feb 24 2021
Showing 1-2 of 2 results.