cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A327936 Multiplicative with a(p^e) = p if e >= p, otherwise 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 01 2019

Keywords

Examples

			For n = 12 = 2^2 * 3^1, only prime factor p = 2 satisfies p^p | 12, thus a(12) = 2.
For n = 108 = 2^2 * 3^3, both prime factors p = 2 and p = 3 satisfy p^p | 108, thus a(108) = 2*3 = 6.
		

Crossrefs

Differs from A129252 for the first time at n=108.

Programs

  • Mathematica
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; IntegerQ@ p :> If[e >= p, p, 1]] &, 120] (* Michael De Vlieger, Oct 01 2019 *)
  • PARI
    A327936(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]>=f[k,1])); factorback(f); };

Formula

Multiplicative with a(p^e) = p if e >= p, otherwise 1.
A001221(a(n)) = A129251(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (p-1)/p^p) = 1.3443209052633459342... . - Amiram Eldar, Nov 07 2022

A327938 Multiplicative with a(p^e) = p^(e mod p).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 2, 9, 10, 11, 3, 13, 14, 15, 1, 17, 18, 19, 5, 21, 22, 23, 6, 25, 26, 1, 7, 29, 30, 31, 2, 33, 34, 35, 9, 37, 38, 39, 10, 41, 42, 43, 11, 45, 46, 47, 3, 49, 50, 51, 13, 53, 2, 55, 14, 57, 58, 59, 15, 61, 62, 63, 1, 65, 66, 67, 17, 69, 70, 71, 18, 73, 74, 75, 19, 77, 78, 79, 5, 3, 82, 83, 21, 85, 86, 87, 22
Offset: 1

Views

Author

Antti Karttunen, Oct 01 2019

Keywords

Comments

All terms are in A048103.

Crossrefs

Differs from A065883 for the first time at n=27.

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, p]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 07 2022 *)
  • PARI
    A327938(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]%f[k,1])); factorback(f); };

Formula

Multiplicative with a(p^e) = p^(e mod p).
a(n) = n / A327939(n).
For all n, A129251(a(n)) = 0, A327936(a(n)) = 1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1/(1+1/p^p)) = 0.38559042841678887219... . - Amiram Eldar, Nov 07 2022

A377515 The largest divisor of n that is a term in A276078.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 9, 10, 11, 6, 13, 14, 15, 2, 17, 18, 19, 10, 21, 22, 23, 6, 25, 26, 9, 14, 29, 30, 31, 2, 33, 34, 35, 18, 37, 38, 39, 10, 41, 42, 43, 22, 45, 46, 47, 6, 49, 50, 51, 26, 53, 18, 55, 14, 57, 58, 59, 30, 61, 62, 63, 2, 65, 66, 67, 34, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Oct 30 2024

Keywords

Comments

First differs from A327937 at n = 625 = 5^4: a(625) = 125, while A327937(625) = 625.
The number of these divisors is A377516(n), and their sum is A377517(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Min[PrimePi[p], e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^min(primepi(f[i,1]), f[i,2]));}

Formula

Multiplicative with a(p^e) = p^min(pi(p), e), where pi(n) = A000720(n).
a(n) = n if and only if n is in A276078.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (p^((pi(p)+1)*s) - p^(pi(p)+1) - p^(pi(p)*s) + p^pi(p))/p^((pi(p)+1)*s).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 - 1/(p^pi(p) * (p+1))) = 0.80906238421914194523... .

A378424 Product_{n>=1} (1+x^n)^a(n) = Sum_{k>=0} C(k)*x^k, where C(k) = A000108(k).

Original entry on oeis.org

1, 2, 3, 10, 25, 78, 245, 810, 2700, 9250, 32065, 112710, 400023, 1432858, 5170575, 18784170, 68635477, 252088416, 930138521, 3446167850, 12815663595, 47820447026, 178987624513, 671825132838, 2528212128750, 9536895064398, 36054433807398, 136583761444354, 518401146543811, 1971076361996550, 7506908923471953, 28634752211620266
Offset: 1

Views

Author

Thomas Scheuerle, Nov 26 2024

Keywords

Comments

Conjecture: A327937(n) divides a(n).

Crossrefs

Programs

  • PARI
    A179277(n) = if(n<=1, 1, sum(k=0,floor(n/2),A179277(k)*binomial(2*n-4*k, n-2*k)/(n-2*k+1)))
    a(max_n) = {my(va,vb,vc); vc=va=vector(max_n);vb = vector(max_n,k,A179277(k)); for(k=1,max_n,vc[k]=k*vb[k]-sum(m=1,k-1,vc[m]*vb[k-m])); for(k=1,max_n,va[k]=1/k*sumdiv(k,m,moebius(k/m)*vc[m])); va;}

Formula

Inverse Euler transform of A179277.
Showing 1-4 of 4 results.