A328026 Number of divisible pairs of consecutive divisors of n.
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 3, 1, 4, 2, 2, 1, 2, 2, 2, 3, 4, 1, 2, 1, 5, 2, 2, 2, 2, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 2, 2, 3, 2, 4, 1, 4, 2, 4, 2, 2, 1, 2, 1, 2, 2, 6, 2, 4, 1, 4, 2, 2, 1, 2, 1, 2, 3, 4, 2, 4, 1, 4, 4, 2, 1, 2, 2, 2, 2, 6, 1, 2, 2, 4, 2, 2, 2, 2, 1, 3, 4, 6, 1, 4, 1, 6, 2
Offset: 1
Keywords
Examples
The divisors of 500 are {1,2,4,5,10,20,25,50,100,125,250,500}, with consecutive divisible pairs {1,2}, {2,4}, {5,10}, {10,20}, {25,50}, {50,100}, {125,250}, {250,500}, so a(500) = 8.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Crossrefs
Programs
-
Magma
f:=func
; g:=func ; [g(n):n in [1..100]]; // Marius A. Burtea, Nov 20 2019 -
Mathematica
Table[Length[Split[Divisors[n],!Divisible[#2,#1]&]]-1,{n,100}]
-
PARI
a(n) = {my(d=divisors(n), nb=0); for (i=2, #d, if ((d[i] % d[i-1]) == 0, nb++)); nb;} \\ Michel Marcus, Oct 05 2019
Formula
a(p^k) = k for any prime number p and k >= 0. - Rémy Sigrist, Oct 05 2019
Extensions
Data section extended up to a(105) by Antti Karttunen, Feb 23 2023
Comments