A328149 Numbers whose set of divisors contains a quadruple (x, y, z, w) satisfying x^3 + y^3 + z^3 = w^3.
60, 72, 120, 144, 180, 216, 240, 288, 300, 360, 420, 432, 480, 504, 540, 576, 600, 648, 660, 720, 780, 792, 840, 864, 900, 936, 960, 1008, 1020, 1080, 1140, 1152, 1200, 1224, 1260, 1296, 1320, 1368, 1380, 1440, 1500, 1512, 1560, 1584, 1620, 1656, 1680, 1710
Offset: 1
Keywords
Examples
120 is in the sequence because the set of divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120} contains the quadruples {3, 4, 5, 6} and {6, 8, 10, 12}. The first quadruple is primitive.
References
- Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Fred Richman, Sums of Three Cubes
Programs
-
Maple
with(numtheory): for n from 3 to 2000 do : d:=divisors(n):n0:=nops(d):it:=0: for i from 1 to n0-3 do: for j from i+1 to n0-2 do : for k from j+1 to n0-1 do: for m from k+1 to n0 do: if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3 then it:=it+1: else fi: od: od: od: od: if it>0 then printf(`%d, `,n): else fi: od:
-
Mathematica
nq[n_] := If[ Mod[n, 6]>0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[ t = d[[i]]^3 + d[[j]]^3; Do[u = t + d[[h]]^3; If[u > n^3, Break[]]; If[ Mod[n^3, u] == 0 && IntegerQ[v = u^(1/3)] && Mod[n, v] == 0, c++], {h, j+1, m - 1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[ Range@ 1026, nq[#] > 0 &] (* program from Giovanni Resta adapted for the sequence. See A330893 *)
-
PARI
isok(n) = {my(d=divisors(n), m); if (#d > 3, for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (ispower(d[i]^3+d[j]^3+d[k]^3, 3, &m) && !(n%m), return (1));););););} \\ Michel Marcus, Nov 15 2020
Comments