A328204 Numbers of quadruples contained in the divisors of A328149(n).
1, 1, 2, 2, 2, 2, 3, 3, 2, 6, 2, 4, 4, 2, 3, 4, 4, 3, 2, 10, 2, 2, 4, 6, 4, 2, 5, 4, 2, 10, 2, 5, 6, 2, 4, 6, 4, 2, 2, 14, 3, 4, 4, 4, 4, 2, 6, 1, 8, 2, 11, 2, 4, 6, 4, 4, 6, 4, 2, 4, 17, 2, 2, 4, 6, 4, 4, 1, 8, 4, 2, 12, 2, 9, 6, 2, 6, 4, 4, 4, 2, 18, 3, 2, 6
Offset: 1
Keywords
Examples
a(7) = 3 because the set of divisors of A328149(7) = 240: {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains the three quadruples {3, 4, 5, 6}, {6, 8, 10, 12} and {12, 16, 20, 24}. The first quadruple is primitive.
Links
- Michel Marcus, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): for n from 3 to 3000 do : d:=divisors(n):n0:=nops(d):it:=0: for i from 1 to n0-3 do: for j from i+1 to n0-2 do : for k from j+1 to n0-1 do: for m from k+1 to n0 do: if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3 then it:=it+1: else fi: od: od: od: od: if it>0 then printf(`%d, `,it): else fi: od:
-
Mathematica
nq[n_] := If[Mod[n, 6] > 0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[t = d[[i]]^3 + d[[j]]^3; Do[u = t + d[[h]]^2; If[u > n^3, Break[]]; If[Mod[n^3, u] == 0 && IntegerQ[v = u^(1/3)] && Mod[n, v] == 0, c++], {h, j+1, m-1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[Array[nq, 1638], # > 0 &] (* program from Giovanni Resta adapted for the sequence. See A330894 *)
-
PARI
isok(n) = {my(d=divisors(n), nb=0, m); if (#d > 3, for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (ispower(d[i]^3+d[j]^3+d[k]^3, 3, &m) && !(n%m), nb++););););); nb;} lista(nn) = my(m); for (n=1, nn, if (m=isok(n), print1(m, ", "))); \\ Michel Marcus, Nov 15 2020
Comments