A328153 Number of set partitions of [n] such that at least one of the block sizes is 3.
0, 0, 0, 1, 4, 20, 90, 455, 2352, 13132, 76540, 473660, 3069220, 20922330, 149021600, 1109629885, 8604815520, 69437698160, 581661169640, 5051885815603, 45411759404560, 421977921782270, 4047693372023070, 40034523497947132, 407818256494533984, 4274309903558446900
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add( `if`(j=k, 0, b(n-j, k)*binomial(n-1, j-1)), j=1..n)) end: a:= n-> b(n, 0)-b(n, 3): seq(a(n), n=0..27);
-
Mathematica
b[n_, k_] := b[n, k] = If[n==0, 1, Sum[If[j==k, 0, b[n-j, k] Binomial[n-1, j-1]], {j, 1, n}]]; a[n_] := b[n, 0] - b[n, 3]; a /@ Range[0, 27] (* Jean-François Alcover, May 02 2020, after Maple *)