cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328168 Numbers whose prime indices minus 1 are relatively prime.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 35, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 65, 66, 69, 70, 72, 75, 77, 78, 81, 84, 87, 90, 91, 93, 95, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 130, 132, 133, 135, 138, 140, 141, 143, 144, 145, 147
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2019

Keywords

Comments

A multiset is relatively prime if the GCD of its elements is 1. Zeros are ignored when computing GCD, and the empty set has GCD 0.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of partitions whose parts minus one are relatively prime. The enumeration of these partitions by sum is given by A328170.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    6: {1,2}
    9: {2,2}
   12: {1,1,2}
   15: {2,3}
   18: {1,2,2}
   21: {2,4}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   33: {2,5}
   35: {3,4}
   36: {1,1,2,2}
   39: {2,6}
   42: {1,2,4}
   45: {2,2,3}
   48: {1,1,1,1,2}
   51: {2,7}
   54: {1,2,2,2}
   57: {2,8}
		

Crossrefs

Positions of 1's in A328167.
Numbers whose prime indices are relatively prime are A289509.
The version for prime indices plus 1 is A318981.
The GCD of prime indices is A289508.
Partitions whose parts minus 1 are relatively prime are A328170.

Programs

  • Maple
    q:= n-> igcd(map(i-> numtheory[pi](i[1])-1, ifactors(n)[2])[])=1:
    select(q, [$1..150])[];  # Alois P. Heinz, Oct 13 2019
  • Mathematica
    Select[Range[100],GCD@@(PrimePi/@First/@If[#==1,{},FactorInteger[#]]-1)==1&]