cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A328335 Numbers whose consecutive prime indices are relatively prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 48, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2019

Keywords

Comments

First differs from A302569 in having 105, which has prime indices {2, 3, 4}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of partitions whose consecutive parts are relatively prime (A328172).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   6: {1,2}
   7: {4}
   8: {1,1,1}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  22: {1,5}
  23: {9}
		

Crossrefs

A superset of A302569.
Numbers whose prime indices are relatively prime are A289509.
Numbers with no consecutive prime indices relatively prime are A328336.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!MatchQ[primeMS[#],{_,x_,y_,_}/;GCD[x,y]>1]&]

A328170 Number of integer partitions of n whose parts minus 1 are relatively prime.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 8, 12, 18, 27, 38, 53, 74, 102, 137, 184, 241, 317, 413, 536, 687, 880, 1112, 1405, 1765, 2215, 2755, 3424, 4229, 5216, 6402, 7847, 9572, 11662, 14148, 17139, 20688, 24940, 29971, 35969, 43044, 51438, 61311, 72985, 86678, 102807, 121675
Offset: 0

Views

Author

Gus Wiseman, Oct 09 2019

Keywords

Comments

A partition is relatively prime if the GCD of its parts is 1. Zeros are ignored when computing GCD, and the empty set has GCD 0.

Examples

			The a(2) = 1 through a(9) = 18 partitions:
  (2)  (21)  (22)   (32)    (42)     (43)      (62)       (54)
             (211)  (221)   (222)    (52)      (332)      (63)
                    (2111)  (321)    (322)     (422)      (72)
                            (2211)   (421)     (431)      (432)
                            (21111)  (2221)    (521)      (522)
                                     (3211)    (2222)     (621)
                                     (22111)   (3221)     (3222)
                                     (211111)  (4211)     (3321)
                                               (22211)    (4221)
                                               (32111)    (4311)
                                               (221111)   (5211)
                                               (2111111)  (22221)
                                                          (32211)
                                                          (42111)
                                                          (222111)
                                                          (321111)
                                                          (2211111)
                                                          (21111111)
		

Crossrefs

The Heinz numbers of these partitions are given by A328168.
Partitions whose parts are relatively prime are A000837.
Partitions whose parts plus 1 are relatively prime are A318980.
The GCD of the prime indices of n, all minus 1, is A328167(n).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GCD@@(#-1)==1&]],{n,0,30}]
  • PARI
    seq(n)=Vec(sum(d=1, n-1, moebius(d)*(-1/(1-x) + 1/prod(k=0, n\d, 1 - x*x^(k*d) + O(x*x^n)))), -(n+1)) \\ Andrew Howroyd, Oct 17 2019

Formula

G.f.: Sum_{d>=1} mu(d)*(-1/(1-x) + 1/(Prod_{k>=0} 1 - x^(k*d + 1))). - Andrew Howroyd, Oct 17 2019

A328336 Numbers with no consecutive prime indices relatively prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2019

Keywords

Comments

First differs from A318978 in having 897, with prime indices {2, 6, 9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of partitions no consecutive parts relatively prime (A328187).
Besides the initial 1 this differs from A305078: 47541=897*prime(16) is in A305078 but not in this set. - Andrey Zabolotskiy, Nov 13 2019

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  37: {12}
  39: {2,6}
  41: {13}
  43: {14}
		

Crossrefs

Numbers with consecutive prime indices relatively prime are A328335.
Strict partitions with no consecutive parts relatively prime are A328220.
Numbers with relatively prime prime indices are A289509.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!MatchQ[primeMS[#],{_,x_,y_,_}/;GCD[x,y]==1]&]

A328167 GCD of the prime indices of n, all minus 1.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 0, 1, 2, 4, 1, 5, 3, 1, 0, 6, 1, 7, 2, 1, 4, 8, 1, 2, 5, 1, 3, 9, 1, 10, 0, 1, 6, 1, 1, 11, 7, 1, 2, 12, 1, 13, 4, 1, 8, 14, 1, 3, 2, 1, 5, 15, 1, 2, 3, 1, 9, 16, 1, 17, 10, 1, 0, 1, 1, 18, 6, 1, 1, 19, 1, 20, 11, 1, 7, 1, 1, 21, 2, 1, 12
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2019

Keywords

Comments

Zeros are ignored when computing GCD, and the empty set has GCD 0.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			85 has prime indices {3,7}, so a(85) = GCD(2,6) = 2.
		

Crossrefs

Positions of 0's are A000079.
Positions of 1's are A328168.
Positions of records (first appearances) are A006005.
The GCD of the prime indices of n is A289508(n).
The GCD of the prime indices of n, all plus 1, is A328169(n).
Looking at divisors instead of prime indices gives A258409.
Partitions whose parts minus 1 are relatively prime are A328170.

Programs

  • Mathematica
    Table[GCD@@(PrimePi/@First/@If[n==1,{},FactorInteger[n]]-1),{n,100}]

A328169 GCD of the prime indices of n, all plus 1.

Original entry on oeis.org

0, 2, 3, 2, 4, 1, 5, 2, 3, 2, 6, 1, 7, 1, 1, 2, 8, 1, 9, 2, 1, 2, 10, 1, 4, 1, 3, 1, 11, 1, 12, 2, 3, 2, 1, 1, 13, 1, 1, 2, 14, 1, 15, 2, 1, 2, 16, 1, 5, 2, 1, 1, 17, 1, 2, 1, 3, 1, 18, 1, 19, 2, 1, 2, 1, 1, 20, 2, 1, 1, 21, 1, 22, 1, 1, 1, 1, 1, 23, 2, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2019

Keywords

Comments

Zeros are ignored when computing GCD, and the empty set has GCD 0.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			85 has prime indices {3,7}, so a(85) = GCD(4,8) = 4.
		

Crossrefs

Positions of 0's and 1's are A318981.
Positions of records (first appearances) appear to be A116974.
The GCD of the prime indices of n, all minus 1, is A328167(n).
The LCM of the prime indices of n, all plus 1, is A328219(n).
Partitions whose parts plus 1 are relatively prime are A318980.

Programs

  • Mathematica
    Table[GCD@@(PrimePi/@First/@If[n==1,{},FactorInteger[n]]+1),{n,100}]

Formula

a(n) = A289508(A003961(n)).

A328219 LCM of the prime indices of n, all plus 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 6, 5, 2, 3, 4, 6, 6, 7, 10, 12, 2, 8, 6, 9, 4, 15, 6, 10, 6, 4, 14, 3, 10, 11, 12, 12, 2, 6, 8, 20, 6, 13, 18, 21, 4, 14, 30, 15, 6, 12, 10, 16, 6, 5, 4, 24, 14, 17, 6, 12, 10, 9, 22, 18, 12, 19, 12, 15, 2, 28, 6, 20, 8, 30, 20, 21, 6, 22, 26
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Sorted positions of first appearances are A328451.
LCM of prime indices is A290103.
LCM of prime indices minus 1 is A328456.
GCD of prime indices plus 1 is A328169.
Partitions whose parts plus 1 are relatively prime are A318980.
Numbers whose prime indices plus 1 are relatively prime are A318981,

Programs

  • Mathematica
    Table[If[n==1,1,LCM@@(PrimePi/@First/@FactorInteger[n]+1)],{n,100}]
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1]));
    A328219(n) = A290103(A003961(n)); \\ Antti Karttunen, Oct 18 2019

Formula

a(n) = A290103(A003961(n)).
If n = A000040(i_1) * ... * A000040(i_k), then a(n) = lcm(1+i_1,...,1+i_k).

A328163 Number of integer partitions of n whose unsigned differences have a different GCD than the GCD of their parts all minus 1.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 4, 2, 5, 5, 9, 5, 15, 9, 19, 16, 28, 16, 44, 21, 55, 38, 73, 34, 109, 46, 130, 73, 170, 66, 251, 78, 287, 137, 364, 119, 522, 135, 590, 236, 759, 190, 1042, 219, 1175, 425, 1460, 306, 2006, 347, 2277, 671, 2780, 471, 3734, 584, 4197, 1087
Offset: 0

Views

Author

Gus Wiseman, Oct 07 2019

Keywords

Comments

Zeros are ignored when computing GCD, and the empty set has GCD 0.

Examples

			The a(2) = 1 through a(12) = 15 partitions (A = 10, B = 11, C = 12):
  (2)  (3)  (4)   (5)  (6)    (7)   (8)     (9)    (A)      (B)     (C)
            (22)       (33)   (52)  (44)    (63)   (55)     (83)    (66)
                       (42)         (62)    (72)   (64)     (92)    (84)
                       (222)        (422)   (333)  (73)     (722)   (93)
                                    (2222)  (522)  (82)     (5222)  (A2)
                                                   (442)            (444)
                                                   (622)            (552)
                                                   (4222)           (633)
                                                   (22222)          (642)
                                                                    (822)
                                                                    (3333)
                                                                    (4422)
                                                                    (6222)
                                                                    (42222)
                                                                    (222222)
		

Crossrefs

The complement to these partitions is counted by A328164.
The GCD of the divisors of n all minus 1 is A258409(n).
The GCD of the prime indices of n all minus 1 is A328167(n).
Partitions whose parts minus 1 are relatively prime are A328170.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GCD@@Differences[#]!=GCD@@(#-1)&]],{n,0,30}]

A328164 Number of integer partitions of n whose unsigned differences have the same GCD as the GCD of their parts all minus 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 7, 13, 17, 25, 33, 51, 62, 92, 116, 160, 203, 281, 341, 469, 572, 754, 929, 1221, 1466, 1912, 2306, 2937, 3548, 4499, 5353, 6764, 8062, 10006, 11946, 14764, 17455, 21502, 25425, 30949, 36579, 44393, 52132, 63042, 74000, 88709, 104098, 124448
Offset: 0

Views

Author

Gus Wiseman, Oct 07 2019

Keywords

Comments

Zeros are ignored when computing GCD, and the empty set has GCD 0.

Examples

			The a(1) = 1 through a(8) = 17 partitions:
  (1)  (11)  (21)   (31)    (32)     (51)      (43)       (53)
             (111)  (211)   (41)     (321)     (61)       (71)
                    (1111)  (221)    (411)     (322)      (332)
                            (311)    (2211)    (331)      (431)
                            (2111)   (3111)    (421)      (521)
                            (11111)  (21111)   (511)      (611)
                                     (111111)  (2221)     (3221)
                                               (3211)     (3311)
                                               (4111)     (4211)
                                               (22111)    (5111)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The complement to these partitions is counted by A328163.
The GCD of the divisors of n all minus 1 is A258409(n).
The GCD of the prime indices of n all minus 1 is A328167(n).
Partitions whose parts minus 1 are relatively prime are A328170.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GCD@@Differences[#]==GCD@@(#-1)&]],{n,0,30}]

A328451 Sorted positions of first appearances in A328219, where if n = A000040(i_1) * ... * A000040(i_k), then A328219(n) = LCM(1+i_1,...,1+i_k).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 13, 14, 15, 17, 19, 21, 26, 29, 35, 37, 38, 39, 42, 47, 51, 53, 58, 61, 65, 74, 78, 79, 87, 89, 91, 95, 101, 105, 106, 107, 111, 113, 119, 122, 127, 133, 141, 145, 151, 158, 159, 173, 174, 178, 181, 182, 183, 185, 195, 199, 202, 203, 214, 221
Offset: 1

Views

Author

Gus Wiseman, Oct 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Indices of 1's in the ordinal transform of A328219. - Antti Karttunen, Oct 18 2019

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   6: {1,2}
   7: {4}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  26: {1,6}
  29: {10}
  35: {3,4}
  37: {12}
  38: {1,8}
  39: {2,6}
  42: {1,2,4}
  47: {15}
		

Crossrefs

A subsequence of A005117.
Sorted positions of first appearances in A328219.
The GCD of the prime indices of n, all plus 1, is A328169(n).
The LCM of the prime indices of n, all minus 1, is A328456(n).
Partitions whose parts plus 1 are relatively prime are A318980.
Numbers whose prime indices plus 1 are relatively prime are A318981.

Programs

  • Mathematica
    dav=Table[If[n==1,1,LCM@@(PrimePi/@First/@FactorInteger[n]+1)],{n,100}];
    Table[Position[dav,i][[1,1]],{i,dav//.{A___,x_,B___,x_,C___}:>{A,x,B,C}}]
  • PARI
    up_to = 1024;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1]));
    A328219(n) = A290103(A003961(n));
    vord_trans = ordinal_transform(vector(up_to,n,A328219(n)));
    for(n=1,up_to,if(1==vord_trans[n], print1(n,", "))); \\ Antti Karttunen, Oct 18 2019

A328456 LCM of the prime indices of 2n + 1, all minus 1; a(0) = 0.

Original entry on oeis.org

0, 1, 2, 3, 1, 4, 5, 2, 6, 7, 3, 8, 2, 1, 9, 10, 4, 6, 11, 5, 12, 13, 2, 14, 3, 6, 15, 4, 7, 16, 17, 3, 10, 18, 8, 19, 20, 2, 12, 21, 1, 22, 6, 9, 23, 15, 10, 14, 24, 4, 25, 26, 6, 27, 28, 11, 29, 8, 5, 6, 4, 12, 2, 30, 13, 31, 21, 2, 32, 33, 14, 20, 18, 3, 34
Offset: 0

Views

Author

Gus Wiseman, Oct 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 2 * 17 + 1 = 35, all minus 1, are {2,3}, with LCM 6, so a(17) = 6.
		

Crossrefs

Positions of records (first appearances) are A006005.
The GCD of the prime indices of n, all minus 1, is A328167(n).
The LCM of the prime indices of n, all plus 1, is A328219(n).
Partitions whose parts minus 1 are relatively prime are A328170.
Numbers whose prime indices minus 1 are relatively prime are A328168.

Programs

  • Mathematica
    Table[If[n==1,0,LCM@@(PrimePi/@First/@FactorInteger[n]-1)],{n,1,100,2}]
Showing 1-10 of 10 results.